Publications by authors named "YongCheng Jin"

Dual-atom catalysts (DACs) have garnered significant interest due to their high atom utilization and synergistic catalysis. However, developing a precise synthetic method for DACs and comprehending the underlying catalytic mechanisms remain challenging. In this study, we employ a photoinduced anchoring strategy to precisely synthesize PtCo DAC on graphitic carbon nitride (CN).

View Article and Find Full Text PDF

Safety concerns and uncontrollable dendrite growths have severely impeded the advancement of lithium-metal batteries. Herein, a safe deep-eutectic-polymer electrolyte with built-in thermal shutdown capability is proposed by utilizing hydrophobic association of methylcellulose within a novel deep-eutectic-solvent. Specifically, at elevated temperatures, methylcellulose chains aggregate to form dense polymer networks due to hydrophobic association and break the solvation structure equilibrium inside the deep-eutectic system through encapsulating Li in polymer matrix, leading to quick solidification of the electrolyte.

View Article and Find Full Text PDF
Article Synopsis
  • In lithium-sulfur batteries, issues like the shuttling effect and slow redox conversion of polysulfides reduce performance, prompting the search for better sulfur hosts.
  • This research developed a new sulfur host using a one-pot hydrothermal method to create graphene infused with cobalt and doped with boron and nitrogen, improving sulfur binding and conversion.
  • The resulting battery showed impressive performance, achieving a capacity of 1034 mAh/g at 0.5 C and retaining 69% capacity after 500 cycles, proving the new materials greatly enhance efficiency in lithium-sulfur cells.
View Article and Find Full Text PDF

The practical application of Li-S batteries, which hold great potential as energy storage devices, is impeded by various challenges, such as capacity degradation caused volume change, polysulfide shuttling, poor electrode kinetics, and safety concerns. Binder plays a crucial role in suppressing volume change of cathode side, thereby enhancing the electrochemical performance of Li-S batteries. In this research, a novel network binder (SA-Co-PEDOT) composed of sodium alginate is presented, Co ions as cross-linking agent and PEDOT as an electronic conductor.

View Article and Find Full Text PDF

Lithium-sulfur (Li-S) batteries are considered as a promising energy storage technology due to their high energy density; however, the shuttling effect and sluggish redox kinetics of lithium polysulfides (LiPSs) severely deteriorate the electrochemical performance of Li-S batteries. Herein, we report a novel configuration wherein InO and CoO are incorporated into N-doped porous carbon as a sulfur host material (InO@NC-CoO) using metal-organic framework-based materials to synergistically tune the catalytic abilities of different metal oxides for different reaction stages of LiPSs, achieving a rapid redox conversion of LiPSs. In particular, the introduction of N-doped carbon improved the electron transport of the materials.

View Article and Find Full Text PDF

The shuttle effect of soluble lithium polysulfides (LiPSs) poses a crucial challenge for commercializing lithium-sulfur batteries. The functionalization of the separator is an effective strategy for enhancing the cell lifespan through the capture and reuse of LiPSs. Herein, a novel InO nanorod with an ultrathin carbon layer (InO@C) was coated on a polypropylene separator.

View Article and Find Full Text PDF

To satisfy the demand for high safety and energy density in energy storage devices, all-solid-state lithium metal batteries with solid polymer electrolytes (SPE) replacing traditional liquid electrolytes and separators have been proposed and are increasingly regarded as one of the most promising candidates as next-generation energy storage systems. In this study, poly(vinylidene fluoride)-hexafluoropropylene/lignosulfonic acid (PVDF-HFP/LSA) composite polymer electrolyte (CPE) membranes with a micro area interface wetting structure were successfully prepared by incorporating LSA into the PVDF-HFP polymer matrix. The enhanced interaction between the polar functional group in LSA and the C═O in -methylpyrrolidone (NMP) hinders the evaporation of solvent NMP, thus creating a micro area wetting structure, which offers a flexible region for the chain segment movement and enlarging the area of the amorphous zone in PVDF-HFP.

View Article and Find Full Text PDF

Solid-state lithium batteries (SSLBs) have attracted much attention due to their good thermal stability and high energy density. However, solid-state electrolytes with low conductivity and prominent interfacial issues have hindered the further development of SSLBs. In this research, inspired from a selective confinement structure of anions, a novel HMOF-DNSE composite solid electrolyte with a dual selective confinement interface structure is proposed based on the semi-interpenetrating structure generated by poly(vinylidene fluoride)-hexafluoropropylene (PVDF-HFP), poly(di--butylmethylammonium) bis(trifluoromethanesulfonyl)imide (PDADMATFSI), and a metal-organic frameworks MOF derivative (HMOF) as a filler.

View Article and Find Full Text PDF

The introduction of battery-type cathode has been commonly considered a preferred approach to boost the energy density of aqueous hybrid energy storage devices (AHESDs) in alkalic systems, but AHESDs with both high energy density and power density are rare due to the great challenge in designing battery-type anode materials with high rate and durability comparable to capacitive-type carbon anodes. In this paper, a well-hydrated iron selenate (FeSeO) sheath is constructed around FeOOH nanorods by a facile electrochemical activation, demonstrating the unique multifunction in fasting charge diffusion, promoting the dissociation of HO, and inhibiting the irreversible phase transition of FeOOH to inert γ-FeO, which endow the hydrated sheath coated Fe-based anodes with an impressive rate capability and superior durability. Thanks to the comprehensive performance of this Fe-based anode, the assembled AHESD delivered a high energy density of 117 Wh kg with the extraordinary durability of almost 100% capacity retention after 40 000 cycles.

View Article and Find Full Text PDF

β-sitosterol, a natural plant steroid, has been shown to promote anti-inflammatory and antioxidant activities in the body. In this study, β-sitosterol was used to protect against lipopolysaccharide (LPS)-induced cell damage in bovine mammary epithelial cells, which are commonly studied as a cell model of mammary inflammatory response and lipogenesis. Results showed that treatment with a combination of LPS and β-sitosterol significantly reduced oxidative stress and inflammation, while increasing the expression of anti-apoptotic proteins and activating the hypoxia-inducible factor-1(HIF-1α)/mammalian target of rapamycin(mTOR) signaling pathway to inhibit apoptosis and improve lipid synthesis-related gene expression.

View Article and Find Full Text PDF

Engineering human tissue with diverse cell types and architectures remains challenging. The cerebral cortex, which has a layered cellular architecture composed of layer-specific neurons organised into vertical columns, delivers higher cognition through intricately wired neural circuits. However, current tissue engineering approaches cannot produce such structures.

View Article and Find Full Text PDF

Bio-integrated devices need power sources to operate. Despite widely used technologies that can provide power to large-scale targets, such as wired energy supplies from batteries or wireless energy transduction, a need to efficiently stimulate cells and tissues on the microscale is still pressing. The ideal miniaturized power source should be biocompatible, mechanically flexible and able to generate an ionic current for biological stimulation, instead of using electron flow as in conventional electronic devices.

View Article and Find Full Text PDF

Fe-based battery-type anode materials with many faradaic reaction sites have higher capacities than carbon-based double-layer-type materials and can be used to develop aqueous supercapacitors with high energy density. However, as an insurmountable bottleneck, the severe capacity fading and poor cyclability derived from the inactive transition hinder their commercial application in asymmetric supercapacitors (ASCs). In this work, driven by the "oxygen pumping" mechanism, oxygen-vacancy-rich Fe@Fe O @Fe C@C nanoparticles that consist of a unique "fruit with stone"-like structure are developed, and they exhibit enhanced specific capacity and fast charge/discharge capability.

View Article and Find Full Text PDF

Li-rich layered oxide (LLO) cathode materials with mixed cationic and anionic redox reactions display much higher specific capacity than other traditional layered oxide materials. However, the practical specific capacity of LLO during the first cycle in sulfide all-solid-state lithium-ion batteries (ASSLBs) is extremely low. Herein, the capacity contribution of each redox reaction in LLO during the first charging process is qualitatively and quantitatively analyzed by comprehensive electrochemical and structural measurements.

View Article and Find Full Text PDF

Atrial fibrillation (AF) is the most common chronic arrhythmia presenting a heavy disease burden. We report a new approach for generating cardiomyocytes (CMs) resembling atrial cells from human-induced pluripotent stem cells (hiPSCs) using a combination of Gremlin 2 and retinoic acid treatment. More than 40% of myocytes showed rod-shaped morphology, expression of CM proteins (including ryanodine receptor 2, -actinin-2 and F-actin) and striated appearance, all of which were broadly similar to the characteristics of adult atrial myocytes (AMs).

View Article and Find Full Text PDF

Although conjugated linoleic acid (CLA) can promote human health, its content in milk is insufficient to have a significant impact. The majority of the CLA in milk is produced endogenously by the mammary gland. However, research on improving its content through nutrient-induced endogenous synthesis is relatively scarce.

View Article and Find Full Text PDF

Aflatoxin B1 (AFB1), a typical fungal toxin found in feed, is highly carcinogenic. Oxidative stress is one of the main ways it exerts its toxicity; therefore, finding a suitable antioxidant is the key to reducing its toxicity. Astaxanthin (AST) is a carotenoid with strong antioxidant properties.

View Article and Find Full Text PDF

High-voltage spinel LiNiMnO (LNMO), which has the advantages of high energy density, low cost, environmental friendliness, and being cobalt-free, is considered one of the most promising cathode materials for the next generation of power lithium-ion batteries. However, the side reaction at the interface between the LNMO cathode material and electrolyte usually causes a low specific capacity, poor rate, and poor cycling performance. In this work, we propose a facilitated method to build a well-tuned dual structure of LiF coating and F doping LNMO cathode material via simple calcination of LNMO with LiF at low temperatures.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on transitional metal chalcogenides (TMCs) as high-capacity materials for asymmetric supercapacitors, highlighting their charge storage mechanisms similar to hydroxides but with enhanced capacity.
  • A novel heterostructure of Ni Co Mn S/Ni(SeO) (NCMS/NSeO) is developed on Ni-plated carbon cloth, demonstrating that both components can transform into hydroxides during electrochemical processes, which aids in understanding their capacity.
  • The optimized electrodes show impressive performance, achieving a high capacity of 536 mAh/g at 1 A/g, and the assembled supercapacitor reaches an energy density of 141 Wh/kg with excellent retention
View Article and Find Full Text PDF

The central goal of high-performance potassium ion storage is to control the function of the anode material via rational structural design. Herein, N- and S-doped hollow carbon spheres with outer-short-range-order and inner-disorder structures are constructed to achieve highly efficient and ultra-stable potassium ion storage using a low-temperature molten salt system. The ultrathin carbon walls and uniform mesoporous as well as unique heterostructure synergistically realize significant potassium storage performance via facilitating rapid diffusion of potassium ions and alleviating substantial volume expansion.

View Article and Find Full Text PDF

Both zearalenone (ZEA) and lipopolysaccharide (LPS) can induce oxidative stress, and even apoptosis in bovine mammary epithelial cells (MAC-T), but not much attention has been given to the synergistic effect of ZEA and LPS. In this study, we treated MAC-T cells with different concentrations of LPS (1, 10, 50, and 100 μg/mL) and ZEA (5, 15, and 30 μM) to induce cell damage. Previous results show that MAC-T cell viability decreases with increasing LPS concentration.

View Article and Find Full Text PDF

This study aimed to investigate the effect of summer and winter on slaughter performance, muscle quality, flavor-related substance content, and gene expression levels related to the fat metabolism of pheasants. One-hundred 1-day-old pheasants were fed for 5 months starting in March and July and then, respectively, slaughtered in summer (August) and winter (December). The results revealed that compared with summer, winter not only increased pheasant live weight, dressed percentage, full-eviscerated yield, and muscle yield (p < 0.

View Article and Find Full Text PDF

Spinel LiNiMnO (LNMO) is one potential cathode candidate for next-generation high energy-density lithium-ion batteries (LIBs). However, serious capacity decay from its poor structural stability, especially at high operating temperatures, shadows its application prospects. In this work, N-doped LNMO (LNMON) was synthesized by a facile co-precipitation method and multistep calcination, exhibiting a unique yolk-shell architecture.

View Article and Find Full Text PDF

Deoxynivalenol (DON), a mycotoxin produced by , is one of the most prevalent contaminants in livestock feed and causes very large losses to animal husbandry every year. Taraxasterol, isolated from , has anti-inflammatory, antioxidative stress, and antitumor effects. In the present study, bovine mammary epithelial cells (MAC-T) were used as a model, and different concentrations of taraxasterol (0, 1, 5, 10, and 20 μg/mL) were used to protect against DON-induced cell damage.

View Article and Find Full Text PDF

Lithium is one of the trace elements with many physiological properties, such as being anti-cancer, anti-viral, and anti-inflammatory. However, little is known about its effect on milk synthesis during lactation. Therefore, we selected different concentrations (5 mM, 10 mM, and 20 mM) of lithium chloride (LiCl) and assessed the effect of LiCl on bovine mammary epithelial (MAC-T) cells that underwent 4 days of differentiation induction.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionkk95m5vkpflabskt8309i7i21jrfq54n): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once