Publications by authors named "Yong-qing Li"

DExD/H-box helicases are crucial regulators of RNA metabolism and antiviral innate immune responses; however, their role in bacteria-induced inflammation remains unclear. Here, we report that DDX5 interacts with METTL3 and METTL14 to form an m6A writing complex, which adds N6-methyladenosine to transcripts of toll-like receptor (TLR) 2 and TLR4, promoting their decay via YTHDF2-mediated RNA degradation, resulting in reduced expression of TLR2/4. Upon bacterial infection, DDX5 is recruited to Hrd1 at the endoplasmic reticulum in an MyD88-dependent manner and is degraded by the ubiquitin-proteasome pathway.

View Article and Find Full Text PDF

and spores cause food spoilage and disease because of spores' dormancy and resistance to microbicides. However, when spores "come back to life" in germination, their resistance properties are lost. Thus, understanding the mechanisms of spore germination could facilitate the development of "germinate to eradicate" strategies.

View Article and Find Full Text PDF

2Duf, named after the presence of a transmembrane (TM) Duf421 domain and a small Duf1657 domain in its sequence, is likely located in the inner membrane (IM) of spores in some species carrying a transposon with an operon termed . These spores are known for their extreme resistance to wet heat, and 2Duf is believed to be the primary contributor to this trait. In this study, we found that the absence of YetF or YdfS, both Duf421 domain-containing proteins and found only in wild-type (wt) spores with YetF more abundant, leads to decreased resistance to wet heat and agents that can damage spore core components.

View Article and Find Full Text PDF

The majority of commercial polyolefins are produced by coordination polymerization using early or late transition metal catalysts. Molecular catalysts containing these transition metals (Ti, Zr, Cr, Ni, and Fe, etc.) are loaded on supports for controlled polymerization behavior and polymer morphology in slurry or gas phase processes.

View Article and Find Full Text PDF

Accurately, rapidly, and noninvasively identifying Bacillus spores can greatly contribute to controlling a plenty of infectious diseases. Laser tweezers Raman spectroscopy (LTRS) has confirmed to be a powerful tool for studying Bacillus spores at a single cell level. In this study, we constructed a single-cell Raman spectra dataset of living Bacillus spores and utilized deep learning approach to accurately, nondestructively identify Bacillus spores.

View Article and Find Full Text PDF

Unraveling the genetic basis of medicinal plant metabolism and developmental traits is a long-standing goal for pharmacologists and plant biologists. This paper discusses the definition of molecular genetics of medicinal plants, which is an integrative discipline with medicinal plants as the research object. This discipline focuses on the heredity and variation of medicinal plants, and elucidates the relationship between the key traits of medicinal plants(active compounds, yield, resistance, etc.

View Article and Find Full Text PDF
Article Synopsis
  • - Prophages are viral genomes that integrate into bacterial DNA, allowing normal cell division until they are induced to replicate under stress, leading to cell lysis and release of new phage particles.
  • - The study utilized Raman tweezers and microscopy to observe changes in individual bacterial cells carrying the PBSX prophage during germination and growth, finding notable changes in nucleic acid content post-induction with xylose.
  • - Results indicated that induced cells experienced a prolonged growth phase before a rapid lysis, with varying latency in the onset of cell burst among the population, especially in different nutrient conditions.
View Article and Find Full Text PDF

Cardiac hypertrophy is a compensatory response that occurs as a result of increased hemodynamic requirement in peripheral tissues. In the process of cardiac hypertrophy, the expression of different types of genes in different stages is transcriptionally regulated by multiple-level physiological and pathological signals. Histone acetylation, as the most extensive post-translational modification, is closely controlled by the antagonistic histone acetyltransferases (HAT) and histone deacetylases (HDACs).

View Article and Find Full Text PDF

Confocal Raman microscopy is a powerful method for nondestructive and noninvasive detection of chemicals with high spatial resolution, but its long acquisition time hinders its applications in large-scale monitoring of fast dynamics. Here, we report the development of a compressive sensing technique for single-acquisition multifocal Raman spectroscopy, which is capable of improving the speed of conventional confocal Raman spectroscopy by 2-3 orders of magnitude. A sample is excited with a 2-D multifocus pattern, and the Raman scatterings from the multiple foci were projected onto the spectrometer's entrance in a 2-D array.

View Article and Find Full Text PDF

spores incubated on plates for 2 to 98 days at 37°C had identical Ca-dipicolinic acid contents, exhibited identical viability on rich- or poor-medium plates, germinated identically in liquid with all germinants tested, identically returned to vegetative growth in rich or minimal medium, and exhibited essentially identical resistance to dry heat and similar resistance to UV radiation. However, the oldest spores had a lower core water content and significantly higher wet heat and NaOCl resistance. In addition, 47- and 98-day spores had lost >98% of intact 16S and 23S rRNA and 97 to 99% of almost all mRNAs, although minimal amounts of mononucleotides were generated in 91 days.

View Article and Find Full Text PDF

Outer space is a challenging environment for all forms of life, and dormant spores of bacteria have been frequently used to study the survival of terrestrial life in a space journey. Previous work showed that outer space vacuum alone can kill bacterial spores. However, the responses and mechanisms of resistance of individual spores to space vacuum are unclear.

View Article and Find Full Text PDF

Dolores Reyman et al. found the norharmane (9H-pyrido [3,4-b] indole) (NHM) and two acetic acid molecules can form the ternary complex (NHM-2A) in component solvent of dichloromethane and acetic acid via the hydrogen bond chain (J. Lumin.

View Article and Find Full Text PDF

DNA damage kills dry-heated spores of , but dry-heat-treatment effects on spore germination and outgrowth have not been studied. This is important, since if dry-heat-killed spores germinate and undergo outgrowth, toxic proteins could be synthesized. Here, Raman spectroscopy and differential interference contrast microscopy were used to study germination and outgrowth of individual dry-heat-treated and spores.

View Article and Find Full Text PDF

The Gram-positive spore-forming anaerobe is a significant cause of food spoilage, and it is also used as a surrogate for spores for testing the efficacy of commercial sterilization. spores have also been proposed as a vector to deliver drugs to tumor cells for cancer treatments. Such an application of spores requires their germination and return to life.

View Article and Find Full Text PDF

Dormant Bacillales and Clostridiales spores begin to grow when small molecules (germinants) trigger germination, potentially leading to food spoilage or disease. Germination-specific proteins sense germinants, transport small molecules, and hydrolyze specific bonds in cortex peptidoglycan and specific proteins. Major events in germination include (a) germinant sensing; (b) commitment to germinate; (c) release of spores' depot of dipicolinic acid (DPA); (d) hydrolysis of spores' peptidoglycan cortex; and (e) spore core swelling and water uptake, cell wall peptidoglycan remodeling, and restoration of core protein and inner spore membrane lipid mobility.

View Article and Find Full Text PDF

Biological synapses store and process information simultaneously by tuning the connection between two neighboring neurons. Such functionality inspires the task of hardware implementation of neuromorphic computing systems. Ionic/electronic hybrid three-terminal memristive devices, in which the channel conductance can be modulated according to the history of applied voltage and current, provide a more promising way of emulating synapses by a substantial reduction in complexity and energy consumption.

View Article and Find Full Text PDF

The symmetrical structures 2,5-bis(benzoxazol-2-yl)thiophene-3,4-diol (BBTD) can take shape two intramolecular hydrogen bonds in chloroform. In order to research the molecular dynamic behavior of BBTD upon photo-induced process, we utilize density functional theory (DFT) and time-dependent density functional theory (TDDFT) to complete theoretical calculation. Through the comparison of bond length, bond angle, IR spectra, and frontier molecular orbitals between ground state (S) and first excited state (S), it clearly indicates that photoexcitation have slightly influence for intensity of hydrogen bond.

View Article and Find Full Text PDF

Bacillus thuringiensis (Bt) is the most widely used microbial insecticide. To clarify the mechanism of bacterial resistance to ethanol toxicity, the present study investigated the effects of 70% (v/v) ethanol at a moderate temperature (65°C) on Bt spore germination by single-cell Raman spectroscopy and differential interference contrast microscopy. We found that over 80% of Bt spores were inviable after 30 min of treatment.

View Article and Find Full Text PDF

Optical manipulation and label-free characterization of nanoscale structures open up new possibilities for assembly and control of nanodevices and biomolecules. Optical tweezers integrated with Raman spectroscopy allows analyzing a single trapped particle, but is generally less effective for individual nanoparticles. The main challenge is the weak gradient force on nanoparticles that is insufficient to overcome the destabilizing effect of scattering force and Brownian motion.

View Article and Find Full Text PDF

Unlabelled: Clostridium difficile is a Gram-positive spore-forming obligate anaerobe that is a leading cause of antibiotic-associated diarrhea worldwide. In order for C. difficile to initiate infection, its aerotolerant spore form must germinate in the gut of mammalian hosts.

View Article and Find Full Text PDF

Cupriavidus necator accumulates large amounts of poly(3-hydroxybutyrate) (PHB), a biodegradable substitute for petroleum-based plastics, under certain nutrient conditions. Conventional solvent-extraction-based methods for PHB quantification only obtain average information from cell populations and, thus, mask the heterogeneity among individual cells. Laser tweezers Raman spectroscopy (LTRS) was used to monitor dynamic changes in the contents of PHB, nucleic acids, and proteins in View Article and Find Full Text PDF

Poly-beta-hydroxybutyrate (PHB) can be formed in large amounts in Cupriavidus necator and is important for the industrial production of biodegradable plastics. In this investigation, laser tweezers Raman spectroscopy (LTRS) was used to characterize dynamic changes in PHB content-as well as in the contents of other common biomolecule-in C. necator during batch growth at both the population and single-cell levels.

View Article and Find Full Text PDF

Unlabelled: Raman spectroscopy and phase-contrast microscopy were used to examine calcium dipicolinate (CaDPA) levels and rates of nutrient and nonnutrient germination of multiple individual Bacillus subtilis spores treated with cold atmospheric plasma (CAP). Major results for this work include the following: (i) >5 logs of spores deposited on glass surfaces were inactivated by CAP treatment for 3 min, while deposited spores placed inside an impermeable plastic bag were inactivated only ∼2 logs in 30 min; (ii) >80% of the spores treated for 1 to 3 min with CAP were nonculturable and retained CaDPA in their core, while >95% of spores treated with CAP for 5 to 10 min lost all CaDPA; (iii) Raman measurements of individual CAP-treated spores without CaDPA showed differences from spores that germinated with l-valine in terms of nucleic acids, lipids, and proteins; and (iv) 1 to 2 min of CAP treatment killed 99% of spores, but these spores still germinated with nutrients or exogenous CaDPA, albeit more slowly and to a lesser extent than untreated spores, while spores CAP treated for >3 min that retained CaDPA did not germinate via nutrients or CaDPA. However, even after 1 to 3 min of CAP treatment, spores germinated normally with dodecylamine.

View Article and Find Full Text PDF

Unlabelled: This work analyzes the high-pressure (HP) germination of spores of the food-borne pathogen Clostridium perfringens (with inner membrane [IM] germinant receptors [GRs]) and the opportunistic pathogen Clostridium difficile (with no IM GRs), which has growing implications as an emerging food safety threat. In contrast to those of spores of Bacillus species, mechanisms of HP germination of clostridial spores have not been well studied. HP treatments trigger Bacillus spore germination through spores' IM GRs at ∼150 MPa or through SpoVA channels for release of spores' dipicolinic acid (DPA) at ≥400 MPa, and DPA-less spores have lower wet heat resistance than dormant spores.

View Article and Find Full Text PDF

Objectives: Spores of Clostridium difficile and Bacillus cereus are major causes of nosocomial diarrhoea and foodborne disease. Our aim was to measure the dynamics of the uptake of the antibiotic berberine by individual germinating spores and the levels of berberine accumulated in germinated spores.

Methods: Laser tweezers Raman spectroscopy (LTRS) and differential interference contrast microscopy were used to measure levels of berberine accumulated in single germinating spores and to monitor berberine uptake and germination of individual C.

View Article and Find Full Text PDF