Publications by authors named "Yong-qing Fu"

The current key issues in applying acoustofluidics in engineering lie in the inflexibility of manufacturing processes, particularly those involving modifications to piezoelectric materials and devices. This leads to inefficient prototyping and potentially high costs. To overcome these limitations, we proposed a technique that is capable of prototyping acoustofluidic devices in a straightforward manner.

View Article and Find Full Text PDF

Near-infrared (NIR) spectroscopy has been widely utilized to predict multi-constituents of corn in agriculture. However, directly extracting constituent information from the NIR spectra is challenging due to many issues such as broad absorption band, overlapping and non-specific nature. To solve these problems and extract implicit features from the raw data of NIR spectra to improve performance of quantitative models, a one-dimensional shallow convolutional neural network (CNN) model based on an eXtreme Gradient Boosting (XGBoost) feature extraction method was proposed in this paper.

View Article and Find Full Text PDF

Formation of bacterial films on structural surfaces often leads to severe contamination of medical devices, hospital equipment, implant materials, , and antimicrobial resistance of microorganisms has indeed become a global health issue. Therefore, effective therapies for controlling infectious and pathogenic bacteria are urgently needed. Being a promising active method for this purpose, surface acoustic waves (SAWs) have merits such as nanoscale earthquake-like vibration/agitation/radiation, acoustic streaming induced circulations, and localised acoustic heating effect in liquids.

View Article and Find Full Text PDF

Transdermal drug delivery provides therapeutic benefits over enteric or injection delivery because its transdermal routes provide more consistent concentrations of drug and avoid issues of drugs affecting kidneys and liver functions. Many technologies have been evaluated to enhance drug delivery through the relatively impervious epidermal layer of the skin. However, precise delivery of large hydrophilic molecules is still a great challenge even though microneedles or other energized (such as electrical, thermal, or ultrasonic) patches have been used, which are often difficult to be integrated into small wearable devices.

View Article and Find Full Text PDF

Photoacoustic spectroscopy (PAS) has been rapidly developed and applied to different detection scenarios. The acoustic pressure detection is an important part in the PAS system. In this paper, an ultrahigh sensitivity Fabry-Perot acoustic sensor with a T-shaped cantilever was proposed.

View Article and Find Full Text PDF

Precise control of microparticle movement is crucial in high throughput processing for various applications in scalable manufacturing, such as particle monolayer assembly and 3D bio-printing. Current techniques using acoustic, electrical and optical methods offer precise manipulation advantages, but their scalability is restricted due to issues such as, high input powers and complex fabrication and operation processes. In this work, we introduce the concept of capillary wave tweezers, where mm-scale capillary wave fields are dynamically manipulated to control the position of microparticles in a liquid volume.

View Article and Find Full Text PDF

Nanomechanical measurements, especially the detection of weak contact forces, play a vital role in many fields, such as material science, micromanipulation, and mechanobiology. However, it remains a challenging task to realize the measurement of ultraweak force levels as low as nanonewtons with a simple sensing configuration. In this work, an ultrasensitive all-fiber nanonewton force sensor structure based on a single-mode-tapered U-shape multimode-single-mode fiber probe is proposed and experimentally demonstrated with a limit of detection of ~5.

View Article and Find Full Text PDF

Raman spectroscopy has gained popularity in analyzing blood glucose levels due to its non-invasive identification and minimal interference from water. However, the challenge lies in how to accurately predict blood glucose concentrations in human blood using Raman spectroscopy. This paper researches a novel integrated machine learning algorithm called Bagging-ABC-ELM.

View Article and Find Full Text PDF

Humidity sensing and water molecule monitoring have become hot research topics attributed to their potential applications in monitoring breathing/physiological conditions of humans, air conditioning in greenhouses, and soil moisture in agriculture. However, there is a huge challenge for highly sensitive and precision humidity detection with wireless and fast responsive capabilities. In this work, a hybrid/synergistic strategy was proposed using a LiNbO/SiO/SiC heterostructure to generate shear-horizontal (SH) surface acoustic waves (SAWs) and using a nanocomposite of polyethylenimine-silicon dioxide nanoparticles (PEI-SiO NPs) to form a sensitive layer, thus achieving an ultrahigh sensitivity of SAW humidity sensors.

View Article and Find Full Text PDF

Recently, surface acoustic wave (SAW) based acoustofluidic separation of microparticles and cells has attracted increasing interest due to accuracy and biocompatibility. Precise control of the input power of acoustofluidic devices is essential for generating optimum acoustic radiation force to manipulate microparticles given their various parameters including size, density, compressibility, and moving velocity. In this work, an acoustophoretic system is developed by employing SAW based interdigital electrode devices.

View Article and Find Full Text PDF

Recently, single-atom catalysts (SACs) are receiving significant attention in electrocatalysis fields due to their excellent specific activities and extremely high atomic utilization ratio. Effective loading of metal atoms and high stability of SACs increase the number of exposed active sites, thus significantly improving their catalytic efficiency. Herein, we proposed a series (29 in total) of two-dimensional (2D) conjugated structures of TMBNS (TM means those 3d to 5d transition metals) and studied the performance as single-atom catalysts for nitrogen reduction reaction (NRR) using density functional theory (DFT).

View Article and Find Full Text PDF

An in-depth understanding of liquid-liquid phase transition (LLPT) in condensed water will gain insight into anomalous behaviors of dual-amorphous condensed water. Despite numerous experimental, molecular simulation, and theoretical studies, it is yet to achieve a widely accepted consensus with convinced evidence in the condensed matter physics for two-state liquid-liquid transition of water. In this work, a theoretical model is proposed based on the Avrami equation, commonly used to describe first-order phase transitions, to elucidate complex homogeneous and inhomogeneous condensation from high-density liquid (HDL) water to low-density liquid (LDL) water for both pure and ionic dual-amorphous condensed water.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are secreted nanostructures that play various roles in critical cancer processes. They operate as an intercellular communication system, transferring complex sets of biomolecules from cell to cell. The concentration of EVs is difficult to decipher, and there is an unmet technological need for improved (faster, simpler, and gentler) approaches to isolate EVs from complex matrices.

View Article and Find Full Text PDF

Metal-organic framework (MOF)-derived metal oxide semiconductors have recently received extensive attention in gas sensing applications due to their high porosity and three-dimensional architecture. Still, challenges remain for MOF-derived materials, including low-cost and facile synthetic methods, rational nanostructure design, and superior gas-sensing performances. Herein, a series of Fe-MIL-88B-derived trimetallic FeCoNi oxides (FCN-MOS) with a mesoporous structure were synthesized by a one-step hydrothermal reaction followed by calcination.

View Article and Find Full Text PDF

Droplet impact behavior on a solid surface is critical for many industrial applications such as spray coating, food production, printing, and agriculture. For all of these applications, a common challenge is to modify and control the impact regime and contact time of the droplets. This challenge becomes more critical for non-Newtonian liquids with complex rheology.

View Article and Find Full Text PDF

A critical challenge to realize ultra-high sensitivity with optical fiber interferometers for label free biosensing is to achieve high quality factors (Q-factor) in liquid. In this work a high Q-factor of 10, which significantly improves the detection resolution is described based on a structure of single mode -core-only -single mode fiber (SCS) with its multimode (or Mach-Zehnder) interference effect as a filter that is integrated into an erbium-doped fiber laser (EDFL) system for excitation. In the case study, the section of core-only fiber is functionalized with porcine immunoglobulin G (IgG) antibodies, which could selectively bind to bacterial pathogen of Staphylococcus aureus (S.

View Article and Find Full Text PDF

Raman spectroscopy, with its advantages of non-contact nature, rapid detection, and minimum water interference, is promising for non-invasive blood detection or diagnosis in clinic applications. However, there is a critical issue that how to accurately analyze blood composition by Raman spectroscopy. In this study, we apply extreme learning machine (ELM) algorithm and a multivariate calibration regression model to analyze the results from Raman spectroscopy and determine the component's concentrations in blood samples, including glucose, cholesterol, and triglyceride.

View Article and Find Full Text PDF

Machine-learning assisted handwriting recognition is crucial for development of next-generation biometric technologies. However, most of the currently reported handwriting recognition systems are lacking in flexible sensing and machine learning capabilities, both of which are essential for implementation of intelligent systems. Herein, assisted by machine learning, we develop a new handwriting recognition system, which can be applied as both a recognizer for written texts and an encryptor for confidential information.

View Article and Find Full Text PDF

'What is the structure of water?' This has been a perplexing question for a long time and water structure with various phases is a great topic of research interest. Topological complexity generally occurs because hydrophilic ions strongly influence the size and shape of condensed water structures owing to their kosmotropic and chaotropic transitions. In this study, an extended Stokes-Einstein model incorporating Flory-Huggins free energy equation is proposed to describe the constitutive relationship between dynamic diffusion and condensed water structure with a topological complexity.

View Article and Find Full Text PDF

Flexible human-machine interfaces show broad prospects for next-generation flexible or wearable electronics compared with their currently available bulky and rigid counterparts. However, compared to their rigid counterparts, most reported flexible devices (e.g.

View Article and Find Full Text PDF

Multifunctional environmental sensing is crucial for various applications in agriculture, pollution monitoring, and disease diagnosis. However, most of these sensing systems consist of multiple sensors, leading to significantly increased dimensions, energy consumption, and structural complexity. They also often suffer from signal interferences among multiple sensing elements.

View Article and Find Full Text PDF

A simulated design for a temperature-compensated voltage sensor based on photonic crystal fiber (PCF) infiltrated with liquid crystal and ethanol is presented in this paper. The holes distributed across the transverse section of the PCF provide two channels for mode coupling between the liquid crystal or ethanol and the fiber core. The couplings are both calculated accurately and explored theoretically using the finite element method (FEM).

View Article and Find Full Text PDF

Ice accretion on economically valuable and strategically important surfaces poses significant challenges. Current anti-/de-icing techniques often have critical issues regarding their efficiency, convenience, long-term stability, or sustainability. As an emerging ice mitigation strategy, the thin-film surface acoustic wave (SAW) has great potentials due to its high energy efficiency and effective integration on structural surfaces.

View Article and Find Full Text PDF

Standing surface acoustic waves (SSAWs) have been extensively used as acoustic tweezers to manipulate, transport, and separate microparticles and biological cells in a microscale fluidic environment, with great potentials for biomedical sensing, genetic analysis, and therapeutics applications. Currently, there lacks an accurate, reliable, and efficient three-dimensional (3D) modeling platform to simulate behaviors of micron-size particles/cells in acoustofluidics, which is crucial to provide the guidance for the experimental studies. The major challenge for achieving this is the computational complexity of 3D modeling.

View Article and Find Full Text PDF

Transition metal sulfides and oxides with high theoretical capacities have been regarded as promising anode candidates for a sodium-ion battery (SIB); however, they have critical issues including sluggish electrochemical kinetics and poor long-term stability. Herein, a dual carbon design strategy is proposed to integrate with highly active heterojunctions to overcome the above issues. In this new design, CoS/CoO hollow dodecahedron heterojunctions are sandwiched between open framework carbon-spheres (OFCs) and a reduced graphene oxide (rGO) nanomembrane (OFC@CoS/CoO@rGO).

View Article and Find Full Text PDF