Publications by authors named "Yong-mei Chen"

Customizable and viscoelastic porous biomaterials are highly desired as implant scaffold for repairing large-volume defects. Herein, we report customizable chitosan microfibers (CMFs)-based hydrospongels with mechanical properties comparable to soft tissues. The CMFs formed under high-speed shearing during crystallization of chitosan, and then they are crosslinked through covalent bond and hydrogen bond to form hydrospongels.

View Article and Find Full Text PDF

This work includes a novel approach for synthesis/fabrication of AuNRs of varied aspect ratios leading to investigation on the kinetics of their growth mechanism. The synthesized AuNRs were further functionalized with MWCNTs (AuNRs@MWCNTs) by one-pot synthesis. The synthesized AuNRs and AuNRs@MWCNTs were characterized by employing UV-vis spectroscopy.

View Article and Find Full Text PDF

Red fluorescent hydrogels possessing injectable and self-healing properties have widespread potential in biomedical field. It is still a challenge to achieve a biomacromolecules based dynamic hydrogels simultaneously combining with excellent red fluorescence, good mechanical properties, and biocompatibility. Here we first explore hydrophilic inclusion complex of (R-CDs@α-CD) derived from hydrophobic red fluorescent carbon dots (R-CDs) and α-cyclodextrin (α-CD), and then achieved a red fluorescent and dynamic polysaccharide R-CDs@α-CD/CEC-l-OSA hydrogel.

View Article and Find Full Text PDF
Article Synopsis
  • - A new type of dynamic hydrogel has been developed that is injectable, self-healing, and capable of remodeling itself at the target site for drug delivery, addressing issues with protein bioavailability after implantation.
  • - The hydrogel achieves pH responsiveness by crosslinking biomacromolecules through dynamic covalent bonds, using oxidized konjac glucomannan and poly (aspartic hydrazide) to enhance mechanical properties and stability.
  • - This innovative hydrogel allows for controlled and sustained release of protein drugs, making it a promising candidate for biomedical applications.
View Article and Find Full Text PDF

In this study, the copper-nickel (Cu-Ni) bimetallic electrocatalysts for electrochemical CO reduction reaction(CORR) are fabricated by taking the finely designed poly(ionic liquids) (PIL) containing abundant Salen and imidazolium chelating sites as the surficial layer, wherein Cu-Ni, PIL-Cu and PIL-Ni interaction can be readily regulated by different synthetic scheme. As a proof of concept, Cu@Salen-PIL@Ni(NO) and Cu@Salen-PIL(Ni) hybrids differ significantly in the types and distribution of Ni species and Cu species at the surface, thereby delivering distinct Cu-Ni cooperation fashion for the CORR. Remarkably, Cu@Salen-PIL@Ni(NO) provides a C2+ faradaic efficiency (FE) of 80.

View Article and Find Full Text PDF
Article Synopsis
  • Concerns about fossil fuel impact have increased the demand for green and renewable materials in advanced energy storage, particularly biopolymers used in gel electrolytes for supercapacitors.
  • This review discusses the structure, properties, and evaluation metrics of biopolymer-based hydrogel electrolytes while also analyzing their electrochemical performance and functionalities.
  • It highlights current challenges and potential solutions in developing biopolymer materials for sustainable energy storage devices.
View Article and Find Full Text PDF

Polysaccharide based self-healing and injectable hydrogels with reversible characteristics have widespread potential in protein drug delivery. However, it is a challenge to design the dynamic hydrogel for sequential release of protein drugs. Herein, we developed a novel mussel inspired sequential protein delivery dynamic polysaccharide hydrogel.

View Article and Find Full Text PDF

Biomacromolecules based injectable and self-healing hydrogels possessing high mechanical properties have widespread potential in biomedical field. However, dynamic features are usually inversely proportional to toughness. It is challenging to simultaneously endow these properties to the dynamic hydrogels.

View Article and Find Full Text PDF

Solar-driven interfacial evaporation materials based on nanocomposite hydrogels have emerged for seawater desalination. Nevertheless, the issue of mechanical degradation derived from the swelling behavior of hydrogel is often seriously underestimated, which strongly hinders the practical application for long-term solar vapor generation, especially in high-salinity brine. Herein, a novel CNT@Gel-nacre with enhanced capillary pumping design has been proposed and fabricated for tough and durable solar-driven evaporator through uniformly doping carbon nanotubes (CNTs) into the tough gel-nacre.

View Article and Find Full Text PDF

The electrocatalytic reduction of CO to CO with high efficiency is one of the most promising approaches for CO conversion due to its considerable economic feasibility and broad application prospects. In this study, three Ag@COF-R (R = -H, -OCH, -OH) hybrids were facilely fabricated by impregnating silver acetate (AgOAc) into respective covalent organic frameworks (COFs) prepared in advance. They differ significantly in the crystallinity, porosity, distribution, size, and electronic configuration of AgOAc species, which thereby influences both the activity and the selectivity of electrolytic CO-to-CO transformation.

View Article and Find Full Text PDF

The proper microenvironment is critical for the storage and transportation of embryonic stem cells (ESCs). To mimic a dynamic 3D microenvironment as it exists and consider "off-the-shelf" availability reaching the destination, we proposed an alternative approach that allows for facile storage and transportation of stem cells in the form of ESCs-dynamic hydrogel construct (CDHC) under ambient conditions. To form CDHC, mouse embryonic stem cells (mESCs) were encapsulated within a polysaccharide-based dynamic and self-biodegradable hydrogel.

View Article and Find Full Text PDF

Accurate discrimination and classification of unknown species are the basis to predict its characteristics or applications to make correct decisions. However, for biogenic solutions that are ubiquitous in nature and our daily lives, direct determination of their similarities and disparities by their molecular compositions remains a scientific challenge. Here, we explore a standard and visualizable ontology, termed "biogenic solution map", that organizes multifarious classes of biogenic solutions into a map of hierarchical structures.

View Article and Find Full Text PDF

Injectable dressings offering intrinsic antibacterial activity and antioxidation are required, because persistent bacterial infection and oxidative damage are common issues associated with chronic non-healing wounds. Herein, a versatile QCS-l-TA-l-OHA hydrogel is fabricated using ubiquitous nature derived biological macromolecules, quaternized chitosan (QCS), tannic acid (TA) and oxidant hyaluronic acid (OHA), driving by multiple dynamic interactions under physiological conditions. The hydrogel can serve as multiple functional wound dress with injectable and self-healing capabilities coupling with attractive antibacterial activity and antioxidation.

View Article and Find Full Text PDF

Exploring a strategy to effectively repair cerebral ischemic injury is a critical requirement for neuroregeneration. Herein, we transplanted a neural stem cell (NSC)-laden self-healing and injectable hydrogel into the brains of ischemic rats and evaluated its therapeutic effects. We observed an improvement in neurological functions in rats transplanted with the NSC-laden hydrogel.

View Article and Find Full Text PDF
Article Synopsis
  • The study aimed to assess the Quality of Recovery (QoR) from the patients' perspective after surgery, highlighting its importance in postoperative care.
  • Researchers used the QoR-15 scale to survey 503 surgical patients at a large hospital in China, comparing their subjective recovery scores before and after surgery.
  • Findings showed a significant decrease in overall QoR scores post-surgery, emphasizing the need for better transitional care for patients after they leave the hospital to support their recovery.
View Article and Find Full Text PDF

Tough gel with extreme temperature tolerance is a class of soft materials having potential applications in the specific fields that require excellent integrated properties under subzero temperature. Herein, physically crosslinked Europium (Eu)-alginate/polyvinyl alcohol (PVA) organohydrogels that do not freeze at far below 0°C, while retention of high stress and stretchability is demonstrated. These organohydrogels are synthesized through displacement of water swollen in polymer networks of hydrogel to cryoprotectants (e.

View Article and Find Full Text PDF

Design and synthesis of environmentally friendly adsorbents with high adsorption capacities are urgently needed to control pollution of water resources. In this work, a calcium ion-induced approach was used to synthesize sodium alginate fibroid hydrogel (AFH). The as-prepared AFH has certain mechanical strength, and the mechanical strength is enhanced especially after the adsorption of heavy metal ions, which is very convenient for the recovery.

View Article and Find Full Text PDF

Epididymitis can be caused by infectious and noninfectious etiological factors. While microbial infections are responsible for infectious epididymitis, the etiological factors contributing to noninfectious epididymitis remain to be defined. The present study demonstrated that damaged male germ cells (DMGCs) induce epididymitis in mice.

View Article and Find Full Text PDF

The reliable and accurate quantification of ammonia in electrochemical and photochemical experiments has been a technical challenge owing to the extremely low concentration of generated ammonia, interference from trace amounts of cations and organic compounds, and ammonia contamination from various sources. As a result, overestimation and significant errors may happen in many research works. Herein, accuracy and precision of ion chromatography (IC) are evaluated at different pH; excellent performance with a low detection limit (<2 μg L ) under acidic and neutral conditions is found, whereas the linearity is unsatisfactory in the low NH concentration range (0-100 μg L ) under alkaline conditions.

View Article and Find Full Text PDF

Exploring photoluminescent silk fibers, possessing biocompatibility as well as stable and durable fluorescent properties, is a requirement for the development of novel photoluminescent biomaterials. Herein, we fabricate photoluminescent silk fibers, TPCA@SF, via modifying an organic fluorescent molecule (5-oxo-3,5-dihydro-2-thiazolo [3,2-] pyridine-7-carboxylic acid, TPCA) onto silk fibers, along with using quaternary ammonium salt didodecyldimethylammonium bromide (DDAB) as a color-fixing agent. The hydrogen bonds and electrostatic association among silk fibers, TPCA and DDAB, ensure the stable modification.

View Article and Find Full Text PDF

Fabricating a strain sensor that can detect large deformation over a curved object with a high sensitivity is crucial in wearable electronics, human/machine interfaces, and soft robotics. Herein, an ionogel nanocomposite is presented for this purpose. Tuning the composition of the ionogel nanocomposites allows the attainment of the best features, such as excellent self-healing (>95% healing efficiency), strong adhesion (347.

View Article and Find Full Text PDF

Hydrogels as soft and wet materials have attracted much attention in sensing and flexible electronics. However, traditional hydrogels are fragile or have unsatisfactory recovery capability, which largely limit their applications. Here, a novel hydrogen bond based sulfuric acid-poly(acrylic acid) (PAA)/poly(vinyl alcohol) physical hydrogel is developed for addressing the above drawbacks.

View Article and Find Full Text PDF

Development of novel photoluminescent hydrogels with toughness, biocompatibility, and antibiosis is important for the applications in biomedical field. Herein, novel tough photoluminescent lanthanide (Ln)-alginate/poly(vinyl alcohol) (PVA) hydrogels with the properties of biocompatibility and antibiosis have been facilely synthesized by introducing hydrogen bonds and coordination bonds into the interpenetrating networks of Na-alginate and PVA, via approaches of frozen-thawing and ion-exchanging. The resultant hydrogels exhibit high mechanical strength (0.

View Article and Find Full Text PDF

Self-healing injectable hydrogels can be formulated as three-dimensional carriers for the treatment of neurological diseases with desirable advantages, such as avoiding the potential risks of cell loss during injection, protecting cells from the shearing force of injection. However, the demands for biocompatible self-healing injectable hydrogels to meet above requirements and to promote the differentiation of neural stem cells (NSCs) into neurons remain a challenge. Herein, we developed a biocompatible self-healing polysaccharide-based hydrogel system as a novel injectable carrier for the delivery of NSCs.

View Article and Find Full Text PDF