The study aimed to determine the effects of protease-activated receptor-2 (PAR-2) on glial scar formation after spinal cord injury (SCI) in Sprague-Dawley (SD) rats and the underlying mechanisms. Rivlin and Tator's acute extradural clip compression injury (CCI) model of severe SCI was established in this study. Animals were divided into four groups: 1) sham group (laminectomy only); 2) model group, treated with normal saline; 3) PAR-2 inhibitor group; 4) PAR-2 activator group.
View Article and Find Full Text PDFObjective: To investigate the effect of suppressing apoptosis signal regulating kinase 1 (ASK1) on glial fibrillary acidic protein (GFAP) and vimentin expressions at the injury site and on hindlimb mobility in rats after spinal cord injury (SCI).
Methods: The rat models of SCI were established by extradural compression of the spinal cord using an aneurysm clip. The injured rats were treated with normal saline (model group), ASK1 specific inhibitor thioredoxin (Trx group), or ASK1 monoclonal antibody (Anti-ASK1 group), and the rats receiving a sham operation underwent laminectomy without SCI.
Objective: Spinal cord injury results in loss of neurons, degeneration of axons, formation of glial scar, and severe functional impairment. Human umbilical cord mesenchymal stem cells can be induced to form neural cells in vitro. Thus, these cells have a potential therapeutic role for treating spinal cord injury.
View Article and Find Full Text PDFBovine serum albumin (BSA) is generally used in biomedical experiments. In the solution of some reagents, BSA is necessary to maintain the stability and concentration of the effective component. Therefore, the potential impact of BSA on experimental results should not be neglected when BSA is used.
View Article and Find Full Text PDFHuman umbilical cord mesenchymal stem cells (hUC-MSCs) transplantation has been shown to promote regeneration and neuroprotection in central nervous system (CNS) injuries and neurodegenerative diseases. To develop this approach into a clinical setting it is important to be able to follow the fates of transplanted cells by noninvasive imaging. Neural precursor cells and hematopoietic stem cells can be efficiently labeled by superparamagnetic iron oxide (SPIO) nanoparticle.
View Article and Find Full Text PDF