Macrophages are the primary cell type orchestrating bioresorbable vascular graft (BVG) remodeling and infiltrate from three sources: the adjacent native vessel, circulating blood, and transmural migration from outer surface of the graft. To elucidate the kinetics of macrophage infiltration into the BVG, we fabricated two different bilayer arterial BVGs consisting of a macroporous sponge layer and a microporous electrospun (ES) layer. The Outer ES graft was designed to reduce transmural cell infiltration from the outer surface and the Inner ES graft was designed to reduce cell infiltration from the circulation.
View Article and Find Full Text PDFVascular stiffness is a predictor of cardiovascular disease and pulse wave velocity (PWV) is the current standard for measuring vascular stiffness. Mean arterial pressure is the largest confounding variable to PWV; therefore, in this study we aimed to test the hypothesis that increased aortic PWV in type 2 diabetic mice is driven by increased blood pressure rather than vascular biomechanics. Using a combination of PWV and pressure myography, our data demonstrate no difference in passive mechanics, including outer diameter, inner diameter, compliance (Db/db: 0.
View Article and Find Full Text PDFThe underlying causes of heart valve related-disease (HVD) are elusive. Murine animal models provide an excellent tool for studying HVD, however, the surgical and instrumental expertise required to accurately quantify the structure and organization across multiple length scales have stunted its advancement. This work provides a detailed description of the murine dissection, en bloc staining, sample processing, and correlative imaging procedures for depicting the heart valve at different length scales.
View Article and Find Full Text PDFBackground: Bioresorbable vascular grafts (BVGs) can transform biologically into active blood vessels and represent an alternative to traditional synthetic conduits, which are prone to complications such as infection and thrombosis. Although platelet-derived growth factors and c-Kit positive cells play an important role in smooth muscle cell (SMC) migration and proliferation in vascular injury, atherosclerosis, or allograft, their roles in the vascular remodeling process of an arterial BVG remains unknown. Thus, we assessed the neottisue formation on arterial BVG remodeling by administrating imatinib, which is both a platelet-derived growth factor receptor kinase inhibitor and c-Kit receptor kinase inhibitor, in a murine model.
View Article and Find Full Text PDFTo characterize early events in neotissue formation during the first 2 weeks after vascular scaffold implantation. Biodegradable polymeric scaffolds were implanted as abdominal inferior vena cava interposition grafts in wild-type mice. All scaffolds explanted at day 1 contained a platelet-rich mural thrombus.
View Article and Find Full Text PDFWe previously developed a tissue-engineered vascular graft (TEVG) made by seeding autologous cells onto a biodegradable tubular scaffold, in an attempt to create a living vascular graft with growth potential for use in children undergoing congenital heart surgery. Results of our clinical trial showed that the TEVG possesses growth capacity but that its widespread clinical use is not yet advisable due to the high incidence of TEVG stenosis. In animal models, TEVG stenosis is caused by increased monocytic cell recruitment and its classic ("M1") activation.
View Article and Find Full Text PDFBackground: Acute thrombosis is a crucial cause of bioresorbable vascular graft (BVG) failure. Bone marrow-derived mononuclear cell (BM-MNC)-seeded BVGs demonstrated high graft patency, however, the effect of seeded BM-MNCs against thrombosis remains to be elucidated. Thus, we evaluated an antithrombotic effect of BM-MNC-seeding and utilized platelet-depletion mouse models to evaluate the contribution of platelets to acute thrombosis of BVGs.
View Article and Find Full Text PDFUnlabelled: Neointimal hyperplasia, which results from the activation, proliferation and migration of vascular smooth muscle cells (SMCs), is a detrimental condition for vascular stents or vascular grafts that leads to stenosis. Preventing neointimal hyperplasia of vascular grafts is critically important for the success of arterial vascular grafts. We hypothesized that tropoelastin seeding onto the luminal surface of the graft would prevent neointimal hyperplasia through suppressing neointimal smooth muscle cell proliferation.
View Article and Find Full Text PDFObjective: Bioresorbable vascular grafts are biologically active grafts that are entirely reconstituted by host-derived cells through an inflammation-mediated degradation process. Calcification is a detrimental condition that can severely affect graft performance. Therefore, prevention of calcification is of great importance to the success of bioresorbable arterial vascular grafts.
View Article and Find Full Text PDFAn off-the-shelf, small diameter tissue engineered vascular graft (TEVG) would be transformative to surgeons in multiple subspecialties. Herein, the results of a small diameter (ID ≈ 1 mm) vascular graft constructed from resorbable, amino acid-based poly(ester urea) (PEU) are reported. Electrospun PEU grafts of two different wall thicknesses (type A: 250 μm; type B: 350 μm) are implanted as abdominal infra-renal aortic grafts in a severe combined immune deficient/beige mouse model and evaluated for vessel remodeling over one year.
View Article and Find Full Text PDFBackground: Current commercialized small-diameter arterial grafts have not shown clinical effectiveness due to their poor patency rates. The present study evaluated the feasibility of an arterial bioresorbable vascular graft, which has a porous sponge-type scaffold, as a small-diameter arterial conduit.
Methods: The grafts were constructed by a 50:50 poly (1-lactic-co-ε-caprolactone) copolymer (PLCL) scaffold reinforced by a poly (1-lactic acid) (PLA) nanofiber.
Stenosis is a critical problem in the long-term efficacy of tissue-engineered vascular grafts (TEVGs). We previously showed that host monocyte infiltration and activation within the graft drives stenosis and that TGF-β receptor 1 (TGF-βR1) inhibition can prevent it, but the latter effect was attributed primarily to inhibition of mesenchymal cell expansion. In this study, we assessed the effects of TGF-βR1 inhibition on the host monocytes.
View Article and Find Full Text PDFAim: We investigated the effect of cell seeding dose and incubation time on tissue-engineered vascular graft (TEVG) patency.
Materials & Methods: Various doses of bone marrow-derived mononuclear cells (BM-MNCs) were seeded onto TEVGs, incubated for 0 or 12 h, and implanted in C57BL/6 mice. Different doses of human BM-MNCs were seeded onto TEVGs and measured for cell attachment.
Many surgical interventions for cardiovascular disease are limited by the availability of autologous vessels or suboptimal performance of prosthetic materials. Tissue engineered vascular grafts show significant promise, but have yet to achieve clinical efficacy in small caliber (<5 mm) arterial applications. We previously designed cell-free elastomeric grafts containing solvent casted, particulate leached poly(glycerol sebacate) (PGS) that degraded rapidly and promoted neoartery development in a rat model over 3 months.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
September 2015
Objective: Despite successful translation of bioresorbable vascular grafts for the repair of congenital heart disease, stenosis remains the primary cause of graft failure. In this study, we investigated the efficacy of long-term treatment with the antiplatelet drugs, aspirin and cilostazol, in preventing stenosis and evaluated the effect of these drugs on the acute phase of inflammation and tissue remodeling.
Approach And Results: C57BL/6 mice were fed a drug-mixed diet of aspirin, cilostazol, or normal chow during the course of follow-up.
Decellularized allograft heart valves have been used as tissue-engineered heart valve (TEHV) scaffolds with promising results; however, little is known about the cellular mechanisms underlying TEHV neotissue formation. To better understand this phenomenon, we developed a murine model of decellularized pulmonary heart valve transplantation using a hemodynamically unloaded heart transplant model. Furthermore, because the hemodynamics of blood flow through a heart valve may influence morphology and subsequent function, we describe a modified loaded heterotopic heart transplant model that led to an increase in blood flow through the pulmonary valve.
View Article and Find Full Text PDFRecent advances in vascular tissue engineering have enabled a paradigm shift from ensuring short-term graft survival to focusing on long-term stability and growth potential. We present the first experimental-computational study of a tissue-engineered vascular graft (TEVG) effectively over the full lifespan of the recipient. We show that grafts implanted within the venous circulation of mice remained patent over 2 years without thrombus, stenosis, or aneurysmal dilatation.
View Article and Find Full Text PDFConventional bioreactors are used to enhance extracellular matrix (ECM) production and mechanical strength of tissue-engineered vessels (TEVs) by applying circumferential strain, which is uniaxial stretching. However, the resulting TEVs still suffer from inadequate mechanical properties, where rupture strengths and compliance values are still very different from native arteries. The biomechanical milieu of native arteries consists of both circumferential and axial loading.
View Article and Find Full Text PDFTissue engineered heart valves, especially decellularized valves, are starting to gain momentum in clinical use of reconstructive surgery with mixed results. However, the cellular and molecular mechanisms of the neotissue development, valve thickening, and stenosis development are not researched extensively. To answer the above questions, we developed a murine heterotopic heart valve transplantation model.
View Article and Find Full Text PDFBiodegradable scaffolds seeded with bone marrow mononuclear cells (BMCs) are often used for reconstructive surgery to treat congenital cardiac anomalies. The long-term clinical results showed excellent patency rates, however, with significant incidence of stenosis. To investigate the cellular and molecular mechanisms of vascular neotissue formation and prevent stenosis development in tissue engineered vascular grafts (TEVGs), we developed a mouse model of the graft with approximately 1 mm internal diameter.
View Article and Find Full Text PDFA fundamental problem that affects the field of cardiovascular surgery is the paucity of autologous tissue available for surgical reconstructive procedures. Although the best results are obtained when an individual's own tissues are used for surgical repair, this is often not possible as a result of pathology of autologous tissues or lack of a compatible replacement source from the body. The use of prosthetics is a popular solution to overcome shortage of autologous tissue, but implantation of these devices comes with an array of additional problems and complications related to biocompatibility.
View Article and Find Full Text PDFWe previously developed and validated a murine model for investigating neotissue formation in tissue-engineered vascular grafts (TEVGs). Herein, we present the first longitudinal assessment of both the microstructural composition and the mechanical properties of a TEVG through the process of neovessel formation (total scaffold degradation). We show that when (poly)glycolic acid-based biodegradable scaffolds were used as inferior vena cava interposition grafts in mice, the evolving neovessel developed biaxial properties that approached those of the native vein within 24 weeks of implantation.
View Article and Find Full Text PDFIntimal hyperplasia (IH) remains the major cause of intermediate and long-term failure of vascular grafts and endovascular interventions. Arteries are subjected to a significant longitudinal stress in addition to the shear stress and tensile stress from the blood flow. The aim of this study was to determine the effect of axial stretch on cell proliferation and IH in arteries.
View Article and Find Full Text PDFArterial restenosis associated with intimal hyperplasia is the major cause of long-term failure of vascular interventions. Endothelium injury and the proliferation and migration of smooth muscle cells (SMC) are key events in the development of intimal hyperplasia. The objectives of this study were to develop an ex vivo artery injury model for studying endothelial cell (EC) migration and to compare it with an in vitro co-culture arterial wall injury model in terms of the effect of flow on EC migration and its effect on SMC migration and proliferation.
View Article and Find Full Text PDF