We present a light trapping structure consisting of gold and silver (AuAg) bimetallic non-alloyed nanoparticles (BNNPs) on a silicon dioxide (SiO2) spacer layer over crystalline silicon (c-Si) film, designed to improve the absorption of thin-film c-Si solar cells. Prior to fabrication of the AuAg BNNPs on the SiO2 spacer layer, numerical investigations were carried out using electromagnetic field simulation following the finite-difference time-domain method. The hemispherical Au8Ag8 BNNPs were fabricated and deposited on a 15 nm-thick SiO2 spacer layer, which enhanced light trapping in the c-Si film over a broad wavelength range (450-1100 nm).
View Article and Find Full Text PDFWe report the fabrication of near-vertically elongated GaN nanorods on quartz substrates. To control the preferred orientation and length of individual GaN nanorods, we combined molecular beam epitaxy (MBE) with pulsed-mode metal-organic chemical vapor deposition (MOCVD). The MBE-grown buffer layer was composed of GaN nanograins exhibiting an ordered surface and preferred orientation along the surface normal direction.
View Article and Find Full Text PDFWe report the application of gold and silver (AuAg) bimetallic non-alloyed nanoparticles (BNNPs) on disordered subwavelength structures (d-SWSs). The combined advantages of the plasmonic structures and d-SWSs improved the light trapping performance of flexible thin film crystalline silicon (c-Si) solar cells. Antireflective d-SWSs were fabricated using spin-coated Ag ink and subsequent metal-assisted chemical etching, which reduced the ion-induced surface damage produced by the dry etching process.
View Article and Find Full Text PDFVon Neumann and Wigner theorized the bounding and anti-crossing of eigenstates. Experiments have demonstrated that owing to anti-crossing and similar radiation rates, the graphene-like resonance of inhomogeneously strained photonic eigenstates can generate a pseudomagnetic field, bandgaps and Landau levels, whereas exponential or dissimilar rates induce non-Hermicity. Here, we experimentally demonstrate higher-order supersymmetry and quantum phase transitions by resonance between similar one-dimensional lattices.
View Article and Find Full Text PDFThis Letter reports a novel method for the simple fabrication of microlens arrays with a controlled shape and diameter on glass substrates. Multilayer stacks of silicon dioxide deposited by oblique angle deposition with hole mask patterns enable microlens formation. Precise control of mask height and distance, as well as oblique angle steps between deposited layers, supports the controllability of microlens geometry.
View Article and Find Full Text PDFWe demonstrate an advanced structure for optical interconnect consisting of 4 channel × 10 Gb/s bidirectional optical subassembly (BOSA) formed using silicon optical bench (SiOB) with tapered fiber guiding holes (TFGHs) for precise and passive optical alignment of vertical-cavity surface-emitting laser (VCSEL)-to-multi mode fiber (MMF) and MMF-to-photodiode (PD). The co-planar waveguide (CPW) transmission line (Tline) was formed on the backside of silicon substrate to reduce the insertion loss of electrical data signal. The 4 channel VCSEL and PD array are attached at the end of CPW Tline using a flip-chip bonder and solder pad.
View Article and Find Full Text PDFWe present a light trapping structure consisting of AuAg bimetallic nonalloyed nanoparticles (BNNPs) on cone-shaped GaAs subwavelength structures (SWSs), combining the advantages of plasmonic structures and SWSs for GaAs-based solar cell applications. To obtain efficient light trapping in solar cells, the optical properties' dependence on the size and composition of the Ag and Au metal nanoparticles was systematically investigated. Cone-shaped GaAs SWSs with AuAg BNNPs formed from an Au film of 12 nm and an Ag film of 10 nm exhibited the extremely low average reflectance (R(avg)) of 2.
View Article and Find Full Text PDFWe devised directionally controllable THz emission sources based on lateral composition modulation (LCM) structures. LCM structures were composed of In-rich Ga0.47In0.
View Article and Find Full Text PDFWe present an electro-absorption modulator based on the enhanced electro-optic effect of an asymmetric coupled triple quantum well (ACTQW) to achieve a large transmittance difference at a low driving voltage for high-definition (HD) three-dimensional (3D) imaging applications. Our numerical calculations show that an ACTQW structure can provide a significantly lower-voltage operation without degrading the absorption coefficient change at the operating wavelength of 850 nm. The fabricated electro-absorption modulator (EAM) based on an ACTQW shows that the operating voltage can be reduced by nearly 50% compared with an EAM based on a conventional rectangular quantum well while also achieving a large transmittance difference in excess of 50%, which is in good agreement with the numerical calculation results.
View Article and Find Full Text PDFWe have demonstrated Au-Ag bimetallic non-alloy nanoparticles (BNNPs) on thin a-Si film and c-Si substrate for high SERS enhancement, low cost, high sensitivity and reproducible SERS substrate with bi-SERS sensing properties where two different SERS peak for Au NPs and Ag NPs are observed on single SERS substrate. The isolated Au-Ag bimetallic NPs, with uniform size and spacing distribution, are suitable for uniform high density hotspot SERS enhancement. The SERS enhancement factor of Au-Ag BNNPs is 2.
View Article and Find Full Text PDFUnlabelled: We report the observation of room temperature photoluminescence (PL) emission from GaAs/GaInAs core-multiple-quantum-well (MQW) shell nanowires (NWs) surrounded by AlGaAs grown by molecular beam epitaxy (MBE) using a self-catalyzed technique. PL spectra of the sample show two PL peaks, originating from the GaAs core NWs and the GaInAs MQW shells. The PL peak from the shell structure red-shifts with increasing well width, and the peak position can be tuned by adjusting the width of the MQW shell.
View Article and Find Full Text PDFWe propose the use of bimetallic non-alloyed nanoparticles (BNNPs) to improve the broadband optical absorption of thin amorphous silicon substrates. Isolated bimetallic NPs with uniform size distribution on glass and silicon are obtained by depositing a 10-nm Au film and annealing it at 600°C; this is followed by an 8-nm Ag film annealed at 400°C. We experimentally demonstrate that the deposition of gold (Au)-silver (Ag) bimetallic non-alloyed NPs (BNNPs) on a thin amorphous silicon (a-Si) film increases the film's average absorption and forward scattering over a broad spectrum, thus significantly reducing its total reflection performance.
View Article and Find Full Text PDFWe propose and demonstrate a new electro-absorption modulator (EAM) based on coupled tandem cavities (CTC) having asymmetric tandem quantum well (ATQW) structure with separated electrode configuration to achieve large transmittance change over a broad spectral range at low driving voltage for high definition (HD) 3D imaging applications. Our theoretical calculations show that CTC with ATQW structure can provide large transmittance change over a wide spectral range at low driving voltage. By introducing separated electrode configuration, the fabricated EAM having CTC with ATQW structure shows a large transmittance change over 50%, almost three times larger spectral bandwidth compared to that of EAM having single cavity with a single thickness quantum well without significantly increasing the applied voltage.
View Article and Find Full Text PDFWe report the fabrication of broadband antireflective silicon (Si) nanostructures fabricated using spin-coated silver (Ag) nanoparticles as an etch mask followed by inductively coupled plasma (ICP) etching process. This fabrication technique is a simple, fast, cost-effective, and high-throughput method, making it highly suitable for mass production. Prior to the fabrication of Si nanostructures, theoretical investigations were carried out using a rigorous coupled-wave analysis method in order to determine the effects of variations in the geometrical features of Si nanostructures to obtain antireflection over a broad wavelength range.
View Article and Find Full Text PDFNanoscale Res Lett
December 2013
Although recently developed bio-inspired nanostructures exhibit superior optic performance, their practical applications are limited due to cost issues. We present highly transparent glasses with grassy surface fabricated with self-masked dry etch process. Simultaneously generated nanoclusters during reactive ion etch process with simple gas mixture (i.
View Article and Find Full Text PDFIn this Letter, we experimentally demonstrate a hybrid structure consisting of metal nanoparticles deposited onto a subwavelength structure (SWS), which further increases the absorption of thin amorphous silicon (a-Si) and can possibly lead to a reduction in the minimum required thickness of the a-Si layer. Experimental results show that backscattering of the silver nanoparticles (Ag NPs) deposited on the top surface can be suppressed dramatically (by 85.5%) by the Ag NPs deposited on the SWS.
View Article and Find Full Text PDFWe present broadband antireflective silicon (Si) nanostructures with hydrophobicity using a spin-coated Ag ink and by subsequent metal-assisted chemical etching (MaCE). Improved understanding of MaCE, by conducting parametric studies on optical properties, reveals a design guideline to achieve considerably low solar-weighted reflectance (SWR) in the desired wavelength ranges. The resulting Si nanostructures show extremely low SWR (1.
View Article and Find Full Text PDFWe propose and numerically demonstrate a high absorption hybrid-plasmonic-based metal semiconductor metal photodetector (MSM-PD) comprising metal nanogratings, a subwavelength slit and amorphous silicon or germanium embedded metal nanoparticles (NPs). Simulation results show that by optimizing the metal nanograting parameters, the subwavelength slit and the embedded metal NPs, a 1.3 order of magnitude increase in electric field is attained, leading to 28-fold absorption enhancement, in comparison with conventional MSM-PD structures.
View Article and Find Full Text PDFWe present the effect of broadband antireflective coverglasses (BARCs) with moth eye structures on the power generation capability of a sub-receiver module for concentrated photovoltaics. The period and height of the moth eye structures were designed by a rigorous coupled-wave analysis method in order to cover the full solar spectral ranges without transmission band shrinkage. The BARCs with moth eye structures were prepared by the dry etching of silver (Ag) nanomasks, and the fabricated moth eye structures on coverglass showed strongly enhanced transmittance compared to the bare glass with a flat surface, at wavelengths of 300 - 1800 nm.
View Article and Find Full Text PDFWe present the effect of broadband antireflective coverglasses (BARCs) with moth eye structures on the power generation capability of a sub-receiver module for concentrated photovoltaics. The period and height of the moth eye structures were designed by a rigorous coupled-wave analysis method in order to cover the full solar spectral ranges without transmission band shrinkage. The BARCs with moth eye structures were prepared by the dry etching of silver (Ag) nanomasks, and the fabricated moth eye structures on coverglass showed strongly enhanced transmittance compared to the bare glass with a flat surface, at wavelengths of 300 - 1800 nm.
View Article and Find Full Text PDFWe present a simple, cost-effective, large scale fabrication technique for antireflective disordered subwavelength structures (d-SWSs) on GaAs substrate by Ag etch masks formed using spin-coated Ag ink and subsequent inductively coupled plasma (ICP) etching process. The antireflection characteristics of GaAs d-SWSs rely on their geometric profiles, which were controlled by adjusting the distribution of Ag etch masks via changing the concentration of Ag atoms and the sintering temperature of Ag ink as well as the ICP etching conditions. The fabricated GaAs d-SWSs drastically reduced the reflection loss compared to that of bulk GaAs (>30%) in the wavelength range of 300-870 nm.
View Article and Find Full Text PDFFor reliable three dimensional (3D) imaging system, it is necessary for the optical shutter to have a wide spectral bandwidth operation and enhanced modulation depth. We propose an electro-absorption modulator (EAM) based on coupled Fabry-Perot cavities with micro-cavity (CCMC) which uses asymmetric tandem quantum wells (ATQWs) to obtain improved spectral bandwidth and enhanced modulation depth. Several modulator designs are investigated to obtain improved modulation performance such as wider spectral bandwidth and enhanced modulation depth.
View Article and Find Full Text PDFMetal nanoparticles (NPs) are well known to increase the efficiency of photovoltaic devices by reducing reflection and increasing light trapping within device. However, metal NPs on top flat surface suffer from high reflectivity losses due to the backscattering of the NPs itself. In this paper, we experimentally demonstrate a novel structure that exhibits localized surface plasmon resonance (LSPR) along with broadband ultralow reflectivity over a wide range of wavelength.
View Article and Find Full Text PDFWe demonstrate the distinctive optical properties of disordered nanostructures on glass substrates in accordance with changes in the average size of the nanostructures. Dissimilar sizes of nanostructures were fabricated by using different thicknesses of thermally dewetted Ag nanoparticles as etch masks. Unlike a flat glass substrate, the nanostructured glasses (NSGs) show a changed optical characteristic.
View Article and Find Full Text PDFWe propose and analyse a GaAs-based optical switch having a ring resonator configuration which can switch optical telecommunication signals over the 1300 nm and 1500 nm bands, using bias assisted carrier injection as the switching mechanism. The switching is achieved through variation in the refractive index of the ring resonator produced by changing the injected carrier density through the application of bias voltage. Detail analysis of the switching characteristics reveals that the amount of switching depends on the refractive index change, which indeed is a strong function of injected carrier density and applied bias voltage.
View Article and Find Full Text PDF