Publications by authors named "Yong-Sic Hwang"

Maintenance of energy metabolism is critical for rice (Oryza sativa) tolerance under submerged cultivation. Here, OsHXK7 was the most actively induced hexokinase gene in the embryos of hypoxically germinating rice seeds. Suspension-cultured cells established from seeds of T-DNA null mutants for the OsHXK7 locus did not regrow after 3-d-hypoxic stress and showed increased susceptibility to low-oxygen stress-in terms of viability-and decreased alcoholic fermentation activities compared to those of the wild-type.

View Article and Find Full Text PDF

Seed dormancy is an important agronomic trait under the control of complex genetic and environmental interactions, which have not been yet comprehensively understood. From the field screening of rice mutant library generated by a Ds transposable element, we identified a pre-harvest sprouting (PHS) mutant dor1. This mutant has a single insertion of Ds element at the second exon of OsDOR1 (LOC_Os03g20770), which encodes a novel seed-specific glycine-rich protein.

View Article and Find Full Text PDF

Protein storage vacuoles (PSVs) in aleurone cells coalesce during germination, and this process is highly coupled with mobilization of PSV reserves, allowing de novo synthesis of various hydrolases in aleurone cells for endosperm degradation. Here we show that in barley (Hordeum vulgare L.) oleosins, the major integral proteins of oleosomes are encoded by four genes (HvOle1 to 4), and the expression of HvOle1 and HvOle3 is strongly up-regulated by abscisic acid (ABA), which shows antagonism to gibberellic acid.

View Article and Find Full Text PDF

During germination, the availability of sugars, oxygen, or cellular energy fluctuates under dynamic environmental conditions, likely affecting the global RNA profile of rice genes. Most genes that exhibit sugar-regulation in rice embryos under aerobic conditions are responsive to low energy and anaerobic conditions, indicating that sugar regulation is strongly associated with energy and anaerobic signaling. The interference pattern of sugar regulation by either anaerobic or low energy conditions indicates that induction is likely the more prevalent regulatory mechanism than repression for altering the expression of sugar-regulated genes.

View Article and Find Full Text PDF

The coalescence of protein storage vacuoles (PSVs) is one of the most prominent cellular changes occurring in cereal aleurone cells during germination. This structural change is highly coupled with the functional transition of this organelle from a storage compartment to a lytic section. Gibberellic acid (GA) promotes this process, whereas abscisic acid (ABA) prevents it.

View Article and Find Full Text PDF

Recently, much effort has been made to determine the molecular links and cross-talk between sugar and abscisic acid (ABA) signaling pathways. ABA-inducible expression of OsTIP3;1, encoding a rice tonoplast intrinsic protein, was enhanced by sugar depletion. Such a stimulatory increase in OsTIP3;1 expression under sugar-starvation is possibly not owing to changes in endogenous ABA content.

View Article and Find Full Text PDF

Oleosins are the most abundant proteins in the monolipid layer surrounding neutral storage lipids that form oil bodies in plants. Several lines of evidence indicate that they are physiologically important for the maintenance of oil body structure and for mobilization of the lipids stored inside. Rice has six oleosin genes in its genome, the expression of all of which was found to be responsive to abscisic acid (ABA) in our examination of mature embryo and aleurone tissues.

View Article and Find Full Text PDF

In multicellular organisms, controlling the timing and extent of asymmetric cell divisions (ACDs) is crucial for correct patterning. During post-embryonic root development in Arabidopsis thaliana, ground tissue (GT) maturation involves an additional ACD of the endodermis, which generates two different tissues: the endodermis (inner) and the middle cortex (outer). It has been reported that the abscisic acid (ABA) and gibberellin (GA) pathways are involved in middle cortex (MC) formation.

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on the role of the Arabidopsis thaliana NGATHA (AtNGA) transcription factors in the growth of aerial lateral organs like leaves and flowers, which is regulated by complex genetic networks.
  • Using both loss- and gain-of-function mutants, the study found that overexpression of AtNGA1 to AtNGA4 resulted in smaller, narrower lateral organs, while a quadruple mutant (nga1 nga2 nga3 nga4) led to larger, wider organs.
  • The findings indicate that AtNGA factors are negative regulators of cell proliferation in these organs, as overexpressors had fewer cells due to lower proliferation activity, whereas the quadruple mutant had more cells due to higher
View Article and Find Full Text PDF

Previous publications have shown that BRI1 EMS suppressor 1 (BES1), a positive regulator of the brassinosteroid (BR) signalling pathway, enhances cell divisions in the quiescent centre (QC) and stimulates columella stem cell differentiation. Here, it is demonstrated that BZR1, a BES1 homologue, also promotes cell divisions in the QC, but it suppresses columella stem cell differentiation, opposite to the action of BES1. In addition, BR and its BZR1-mediated signalling pathway are shown to alter the expression/subcellular distribution of pin-formed (PINs), which may result in changes in auxin movement.

View Article and Find Full Text PDF

We characterized the function of the rice cytosolic hexokinase OsHXK7 (Oryza sativa Hexokinase7), which is highly upregulated when seeds germinate under O2 -deficient conditions. According to transient expression assays that used the promoter:luciferase fusion construct, OsHXK7 enhanced the glucose (Glc)-dependent repression of a rice α-amylase gene (RAmy3D) in the mesophyll protoplasts of maize, but its catalytically inactive mutant alleles did not. Consistently, the expression of OsHXK7, but not its catalytically inactive alleles, complemented the Arabidopsis glucose insensitive2-1 (gin2-1) mutant, thereby resulting in the wild type characteristics of Glc-dependent repression, seedling development, and plant growth.

View Article and Find Full Text PDF

Gemcitabine has been used most commonly as an anticancer drug to treat advanced pancreatic cancer patients. However, intrinsic or acquired resistance of pancreatic cancer to gemcitabine was also developed, which leads to very low five-year survival rates. Here, we investigated whether cellular levels of HSP27 phosphorylation act as a determinant of cellular fate with gemcitabine.

View Article and Find Full Text PDF

Tonoplast intrinsic proteins (TIPs) are integral membrane proteins that are known to function in plants as aquaporins. Here, we propose another role for TIPs during the fusion of protein storage vacuoles (PSVs) in aleurone cells, a process that is promoted by gibberellic acid (GA) and prevented by abscisic acid (ABA). Studies of the expression of barley (Hordeum vulgare) TIP genes (HvTIP) showed that GA specifically decreased the abundance of HvTIP1;2 and HvTIP3;1 transcripts, while ABA strongly increased expression of HvTIP3;1.

View Article and Find Full Text PDF

Haematococcus pluvialis cells predominantly remain in the macrozooid stage under favourable environmental conditions but are rapidly differentiated into haematocysts upon exposure to various environmental stresses. Haematocysts are characterized by massive accumulations of astaxanthin sequestered in cytosolic oil globules. Lipidomic analyses revealed that synthesis of the storage lipid triacylglycerol (TAG) was substantially stimulated under high irradiance.

View Article and Find Full Text PDF

Reproductive success of angiosperms relies on the precise development of the gynoecium and the anther, because their primary function is to bear and to nurture the embryo sac/female gametophyte and pollen, in which the egg and sperm cells, respectively, are generated. It has been known that the GRF-INTERACTING FACTOR (GIF) transcription co-activator family of Arabidopsis thaliana (Arabidopsis) consists of three members and acts as a positive regulator of cell proliferation. Here, we demonstrate that GIF proteins also play an essential role in development of reproductive organs and generation of the gamete cells.

View Article and Find Full Text PDF

The interaction between the dual roles of sugar as a metabolic fuel and a regulatory molecule was unveiled by examining the changes in sugar signaling upon oxygen deprivation, which causes the drastic alteration in the cellular energy status. In our study, the expression of anaerobically induced genes is commonly responsive to sugar, either under the control of hexokinase or non-hexokinase mediated signaling cascades. Only sugar regulation via the hexokinase pathway was susceptible for O2 deficiency or energy deficit conditions evoked by uncoupler.

View Article and Find Full Text PDF

Pre-harvest sprouting (PHS) in rice causes poor grain quality and results in significant reductions in yield, leading to significant economic losses. In contrast, deep dormancy can lead to equally unwanted non-uniform germination. Therefore, a suitable level of dormancy is a critically important agronomic trait.

View Article and Find Full Text PDF

Calcineurin B-like (CBL) interacting protein kinase 15 (CIPK15) is a newly identified positive regulator which is critical to directing the O(2) deficiency signal to the sugar signaling cascade as part of Amy3D (representative Amy3 gene) regulation in rice. It is located upstream and probably contributes to reserve mobilization under anoxia. In isolated starving embryos, the temporal pattern of accumulation of CIPK15 transcripts and leaky suppression of this gene suggests that factors other than CIPK15 may also be involved in the regulation of Amy3D expression.

View Article and Find Full Text PDF

Sugars play important roles in many aspects of plant growth and development, acting as both energy sources and signaling molecules. With the successful use of genetic approaches, the molecular components involved in sugar signaling have been identified and their regulatory roles in the pathways have been elucidated. Here, we describe novel mutants of Arabidopsis (Arabidopsis thaliana), named glucose insensitive growth (gig), identified by their insensitivity to high-glucose (Glc)-induced growth inhibition.

View Article and Find Full Text PDF
Article Synopsis
  • * Anaerobic conditions increase the expression of certain Amy3 genes in rice embryos, and their regulation can be affected by the levels of glucose present, indicating two separate pathways for sugar regulation.
  • * When oxygen is insufficient, treatments that inhibit ATP production mimic this anoxic condition, also alleviating sugar repression on other related gene expressions, which ultimately supports improved growth during anaerobic germination.
View Article and Find Full Text PDF

Large-scale RNA profiling revealed that high irradiance differentially regulated 577 out of 1,439 non-redundant genes of the Antarctic marine diatom Chaetoceros neogracile, represented on a custom cDNA chip, during 6 h of treatment. Among genes that were up- or down-regulated more than twofold within 30 min of treatment (310/1,439), about half displayed an acclimatory response during 6 h under high light. Expression of the remaining non-acclimatory genes also rapidly returned to initial levels within 30 min following a shift to low irradiance.

View Article and Find Full Text PDF

Calcium has been suggested as an important mediator of gravity signaling transduction within the root cap statocyte. In a horizontally-placed root, it is redistributed in the direction of the gravity vector (i.e.

View Article and Find Full Text PDF

Approximately 120 UDP-glycosyltransferases (UGTs), which are classified into 14 distinct groups (A to N), have been annotated in the Arabidopsis genome. UGTs catalyze the transfer of sugars to various acceptor molecules including flavonoids. Previously, UGT71C1 was shown to glycosylate the 3-OH of hydroxycinnamates and flavonoids in vitro.

View Article and Find Full Text PDF

We define the photoresponsiveness, during seedling de-etiolation, of PHYTOCHROME-INTERACTING FACTOR 3-LIKE 1 (PIL1), initially identified by microarray analysis as an early-response gene that is robustly repressed by first exposure to light. We show that PIL1 mRNA abundance declines rapidly, with a half-time of 15 min, to a new steady-state level, 10-fold below the initial dark level, within 45 min of first exposure to red light. Analysis of phy-null mutants indicates that multiple phytochromes, including phyA and phyB, impose this repression.

View Article and Find Full Text PDF

A customized cDNA chip analysis provided the relative expression profiling of 1439 ESTs of Chaetoceros neogracile in culture environments maintained between 4 and 10 degrees C. Among the 1439 probes, 21.5% were differentially regulated (2-fold) by the temperature upshift within three days.

View Article and Find Full Text PDF