Publications by authors named "Yong-Qiang Kang"

The hollow noble metal nanostructures have attracted wide attention in catalysis/electrocatalysis. Here a two-step procedure for constructing hollow Rh nanospheres (Rh H-NSs) with clean surface is described. By selectively removing the surfactant and Au core of Au-core@Rh-shell nanostructures (Au@Rh NSs), the surface-cleaned Rh H-NSs are obtained, which contain abundant porous channels and large specific surface area.

View Article and Find Full Text PDF

Bimetallic noble metal nanocrystals have been widely applied in many fields, which generally are synthesized by the wet-chemistry reduction method. This work presents a purposely designed atoms diffusion induced phase engineering of PtAu alloy nanocrystals on platy Au substrate (PtAu-on-Au nanostructures) through simple hydrothermal treatment. Benefitting from the synergistic effects of component and structure, PtAu-on-Au nanostructures remarkably enhance the dehydrogenation pathway of the formic acid oxidation reaction (FAOR), and thus exhibit much higher FAOR activity and durability compared with Pt nanocrystals on platy Au substrate (Pt-on-Au nanostructures) and commercial Pd black due to an excellent stability of platy Au substrate and a high oxidation resistance of PtAu alloy nanocrystals.

View Article and Find Full Text PDF

The co-delivery of siRNA and therapeutic agents provides an effective method for cancer chemotherapy by avoiding drug resistance during the treatment. With a combination of ionic gelation and supercritical fluid technology, nanoparticle-embedded composite microparticles (CMPs) co-loaded with siRNA and paclitaxel (siRNA-PTX-CMPs) were successfully prepared. The results show that CMPs embedded with nanoparticles with a diameter of 50-100 nm exhibited a spherical shape and core-shell structure with a mean diameter of 323 nm.

View Article and Find Full Text PDF

Conventional therapeutic approaches for cancer are limited by cancer cell resistance, which has impeded their clinical applications. The main goal of this work was to investigate the combined antitumor effect of paclitaxel with small interfering RNA modified by cationic liposome formed from modified octadecyl quaternized carboxymethyl chitosan. The cationic liposome was composed of 3β-[N-(N', N'-dimethylaminoethane)-carbamoyl]-cholesterol, dioleoylphosphatidylethanolamine, and octadecyl quaternized carboxymethyl chitosan.

View Article and Find Full Text PDF

Using ammonium bicarbonate (AB) particles as a porogen, chitosan (CS)-based hemostatic porous sponges were prepared in supercritical carbon dioxide due to its low viscosity, small surface tension, and good compatibility with organic solvent. Fourier transform infrared spectroscopy (FTIR) spectra demonstrated that the chemical compositions of CS and poly-(methyl vinyl ether-co-maleic anhydride) (PVM/MA) were not altered during the phase inversion process. The morphology and structure of the sponge after the supercritical fluid (SCF) process were observed by scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Lysozyme (LSZ)-loaded poly-L-lactide (PLLA) porous microparticles (PMs) were successfully prepared by a compressed CO₂ antisolvent process in combination with a water-in-oil emulsion process using LSZ as a drug model and ammonium bicarbonate as a porogen. The effects of different drug loads (5.0%, 7.

View Article and Find Full Text PDF