Peripheral nerve injury (PNI) encompasses damage to nerves located outside the central nervous system, adversely affecting both motor and sensory functions. Although peripheral nerves possess an intrinsic capacity for self-repair, severe injuries frequently result in significant tissue loss and erroneous axonal junctions, thereby impeding complete recovery and potentially causing neuropathic pain. Various therapeutic strategies, including surgical interventions, biomaterials, and pharmacological agents, have been developed to enhance nerve repair processes.
View Article and Find Full Text PDFWith the increasing demand for antimicrobial agents and the spread of antibiotic resistance in pathogens, the exploitation of plant oils to partly replace antibiotic emerges as an important source of fine chemicals, functional food utility and pharmaceutical industries. This work introduces a novel catalytic method of plant oils hydroxylation by Fe(III) citrate monohydrate (Fe-cit.)/NaSO catalyst.
View Article and Find Full Text PDFProtein Pept Lett
April 2021
Background: β-galactosidases are enzymes that are utilized to hydrolyze lactose into galactose and glucose, and are is widely used in the food industry.
Objective: We describe the recombinant expression of an unstudied, heterodimeric β-galactosidase originating from Lactobacillus brevis ATCC 367 in Escherichia coli. Furthermore, six different constructs, in which the two protein subunits were fused with different peptide linkers, were also investigated.
Three large (2084-, 984-, and 2104-amino acids) endo-α-N-acetylgalactosaminidase candidate genes from the commensal human gut bacterium Tyzzerella nexilis were successfully cloned and subsequently expressed in Escherichia coli. Activity tests of the purified proteins revealed that two of the candidate genes (Tn0153 and Tn2105) were able to hydrolyze the disaccharide unit from Galβ1-3GalNAc-α-pNP. The biochemical characterization revealed optimum pH conditions of 4.
View Article and Find Full Text PDFChitin is one of the most abundant and cheaply available biopolymers in Nature. Chitin has become a valuable starting material for many biotechnological products through manipulation of its N-acetyl functionality, which can be cleaved under mild conditions using the enzyme family of de-N-acetylases. However, the chemoselective enzymatic re-acylation of glucosamine derivatives, which can introduce new stable functionalities into chitin derivatives, is much less explored.
View Article and Find Full Text PDFAn unstudied β--acetylhexosaminidase (SnHex) from the soil bacterium was successfully cloned and subsequently expressed as a soluble protein in . Activity tests and the biochemical characterization of the purified protein revealed an optimum pH of 6.0 and a robust thermal stability at 50 °C within 24 h.
View Article and Find Full Text PDF