Quantum chemistry calculations have been performed to compute the optimized geometries, vibrational frequencies, and Mulliken Charges at B3LYP/6-31G(d) and B3LYP/6-311++G(d,p) levels for 3-(4-fluorophenyl)thiophene (FPT), 3-(4-nitrophenyl)thiophene (NPT) and 3-(4-cyanophenyl) thiophene (CPT) in the ground state. In addition, the (13)C and (1)H NMR are calculated by B3LYP/6-311++G(d,p) and B3LYP/6-311++G(2d,2p) methods. The singlet electronic excited state properties of the three compounds were investigated using the time-dependent density functional method (TD-DFT) at the B3LYP/6-311++G(d,p)//TD- B3LYP/6-311++G(d,p) level of theory.
View Article and Find Full Text PDFA novel series of N-pyridyl amides as potent p38alpha kinase inhibitors is described. Based on the structural similarities between the initial hit and a well-known imidazole pyrimidine series of p38alpha inhibitors, potencies within the newly discovered series were quickly improved by installation of an (S)-alpha-methylbenzyl moiety at the 2-position of the pyridine ring. The proposed binding modes of the new series to p38alpha were evaluated against SAR findings and provided rationale for further development of this series of molecules.
View Article and Find Full Text PDFThe design and synthesis of a new class of p38alpha MAP kinase inhibitors based on 4-fluorobenzylpiperidine heterocyclic oxalyl amides are described. Many of these compounds showed low-nanomolar activities in p38alpha enzymatic and cell-based cytokine TNFalpha production inhibition assays. The optimal linkers between the piperidine and the oxalyl amide were found to be [6,5] fused ring heterocycles.
View Article and Find Full Text PDFA family of aryl-substituted maleimides was prepared and studied for their activity against calmodulin dependant kinase. Inhibitory activities against the enzyme ranged from 10nM to >20microM and were dependant upon both the nature of the aryl group and the tether joining the basic amine to the indolyl maleimide core of the inhibitors. Key interactions with the kinase ATP site and hinge region, predicted by homology modeling, were confirmed.
View Article and Find Full Text PDFA family of aryl-substituted maleimides was prepared and studied for their activity against calmodulin-dependant kinase. Inhibitory activities against the enzyme ranged from 34nM to >20microM and were dependant upon both the nature of the aryl group and the tether joining the basic amine to the indolyl maleimide core. Key interactions with the kinase ATP site and hinge region, predicted by homology modeling, were confirmed.
View Article and Find Full Text PDFA family of aryl-substituted maleimides was prepared and studied for their activity against calmodulin dependant kinase. Inhibitory activities against the enzyme ranged from 34nM to >20microM and were dependant upon both the nature of the aryl group and the hydrogen bond donating potential of the maleimide ring. Key interactions with the kinase ATP site and hinge region were found to be consistent with homology modeling predictions.
View Article and Find Full Text PDFNon-ATP competitive pyrimidine-based inhibitors of CaMKIIdelta were identified. Computational studies were enlisted to predict the probable mode of binding. The results of the computational studies led to the design of ATP competitive inhibitors with optimized hinge interactions.
View Article and Find Full Text PDFp38alpha Mitogen Activated Protein Kinase (MAP kinase) is an intracellular soluble serine threonine kinase. p38alpha kinase is activated in response to cellular stresses, growth factors and cytokines such as interleukin-1 (IL-1) and tumor necrosis factor alpha (TNF-alpha). The central role of p38alpha activation in settings of both chronic and acute inflammation has led efforts to find inhibitors of this enzyme as possible therapies for diseases such as rheumatoid arthritis, where p38alpha activation is thought to play a causal role.
View Article and Find Full Text PDFJ Chem Inf Comput Sci
September 2002
A molecular equivalence number (meqnum) classifies a molecule with respect to a class of structural features or topological shapes such as its cyclic system or its set of functional groups. Meqnums can be used to organize molecular structures into nonoverlapping, yet highly relatable classes. We illustrate the construction of some different types of meqnums and present via examples some methods of comparing diverse chemical libraries based on meqnums.
View Article and Find Full Text PDF