Publications by authors named "Yong-Jin Jeong"

This study introduces a hydrothermal synthesis method that uses glucose and Cu ions to create a Cu-nanoparticle (NP)-decorated hydrothermal carbonaceous carbon hybrid material (Cu-HTCC). Glucose serves both as a reducing agent, efficiently transforming Cu ions into elemental Cu nanostructures, and as a precursor for HTCC microstructures. An enhanced plasmon-induced electric field resulting from Cu NPs supported on microstructure matrices, coupled with a distinctive localized π-electronic configuration in the hybrid material, as confirmed by X-ray photoelectron spectroscopic analysis, lead to the heightened optical absorption in the visible-near-infrared range.

View Article and Find Full Text PDF

Establishing dependable, cost-effective electrical connections is vital for enhancing device performance and shrinking electronic circuits. MXenes, combining excellent electrical conductivity, high breakdown voltage, solution processability, and two-dimensional morphology, are promising candidates for contacts in microelectronics. However, their hydrophilic surfaces, which enable spontaneous environmental degradation and poor dispersion stability in organic solvents, have restricted certain electronic applications.

View Article and Find Full Text PDF

A poly (3,6-bis(thiophen-2-yl)-2,5-bis(2-decyltetradecyl)-2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione-co-(2,3-bis(phenyl)acrylonitrile)) (PDPADPP) copolymer, composed of diketopyrrolopyrrole (DPP) and a cyano (nitrile) group with a vinylene spacer linking two benzene rings, is synthesized via a palladium-catalyzed Suzuki coupling reaction. The electrical performance of PDPADPP in organic field-effect transistors (OFETs) and circuits is investigated. The OFETs based on PDPADPP exhibit typical ambipolar transport characteristics, with the as-cast OFETs demonstrating low field-effect hole and electron mobility values of 0.

View Article and Find Full Text PDF

Gamma alumina (γ-AlO) is widely used as a catalyst and catalytic support due to its high specific surface area and porosity. However, synthesis of γ-AlO nanocrystals is often a complicated process requiring high temperatures or additional post-synthetic steps. Here, we report a single-step synthesis of size-controlled and monodisperse, facetted γ-AlO nanocrystals in an inductively coupled nonthermal plasma reactor using trimethylaluminum and oxygen as precursors.

View Article and Find Full Text PDF

This paper examined the effects of no treatment versus plasma treatment, and femtosecond laser irradiation as pre-annealing processes on indium zinc oxide (IZO) films and annealing at high temperatures. The plasma pre-annealed multilayer stacked IZO TFTs showed better electrical properties with mobility enhancement from 2.45 to 7.

View Article and Find Full Text PDF

Background: We investigate the performance of new hydrophobic diffractive multifocal intraocular lenses (IOL) with hydroxyethyl methacrylate (HEMA) and compare their optical quality, contrast sensitivity, and subjective photic phenomena.

Methods: Medical records of patients who underwent routine simple cataract surgery and insertion of an existing multifocal IOL (TFNT, TF group) or a new multifocal IOL (CNWT, CN group) were retrospectively reviewed. Clinical data was collected 2 months postoperatively and included optical quality analysis system (OQAS) indices, contrast sensitivity, and subjective degrees of photic phenomena.

View Article and Find Full Text PDF

A π-conjugated polymer semiconductor, PBDTTTffPI, was synthesized for use as an organic semiconductor suitable for electrohydrodynamic (EHD) jet printing technology. Bulky alkylation of the polymer gave PBDTTTffPI good solubility in several organic solvents. EHD jet printing using PBDTTTffPI ink produced direct patterns of polymer semiconductors while maintaining smooth surface morphologies and crystal structures similar to those of spin-coated PBDTTTffPI films.

View Article and Find Full Text PDF

A 54-year-old man was transferred from another hospital due to a hematoma in the third portion of the duodenum on abdomen CT. He had been admitted for 2 weeks due to vomiting at another hospital. He had abdominal discomfort and nausea without abdominal pain when he visited the Gwangyang Sarang Hospital.

View Article and Find Full Text PDF

Direct drawing techniques have contributed to the ease of patterning soft electronic materials, which are the building blocks of analog and digital integrated circuits. In parallel with the printing of semiconductors and electrodes, selective deposition of gate insulators (GI) is an equally important factor in simplifying the fabrication of integrated devices, such as NAND and NOR gates, and memory devices. This study demonstrates the fabrication of six types of printed GI layers (high/low- polymer and organic-inorganic hybrid material), which are utilized as GIs in organic field-effect transistors (OFETs), using the electrostatic-force-assisted dispensing printing technique.

View Article and Find Full Text PDF

Aluminum oxide, both in amorphous and crystalline forms, is a widely used inorganic ceramic material because of its chemical and structural properties. In this work, we synthesized amorphous aluminum oxide nanoparticles using a capacitively coupled nonthermal plasma utilizing trimethylaluminum and oxygen as precursors and studied their crystallization and phase transformation behavior through postsynthetic annealing. The use of two reactor geometries resulted in amorphous aluminum oxide nanoparticles with similar compositions but different sizes.

View Article and Find Full Text PDF

Engineering the energy levels of organic conducting materials can be useful for developing high-performance organic field-effect transistors (OFETs), whose electrodes must be well controlled to facilitate easy charge carrier transport from the source to drain through an active channel. However, symmetric source and drain electrodes that have the same energy levels are inevitably unfavorable for either charge injection or charge extraction. In this study, asymmetric source and drain electrodes are simply prepared using the electrohydrodynamic (EHD)-jet printing technique after the careful work function engineering of organic conducting material composites.

View Article and Find Full Text PDF

Organic flash memories that employ solution-processed polymer semiconductors preferentially require internal stability of their active channel layers. In this paper, a series of new donor-acceptor copolymers based on cyclopentadithiophene (CDT) and diketopyrrolopyrrole (DPP) are synthesized to obtain high performance and operational stability of nonvolatile floating-gate memory transistors with various additional donor units including thiophene, thiophene-vinylene-thiophene (CDT-DPP-TVT), selenophene, and selenophene-vinylene-selenophene. Detailed analyses on the photophysical, two-dimensional grazing incident X-ray diffraction, and bias stress stability are discussed, which reveal that the CDT-DPP-TVT exhibits excellent bias stress stability over 10 s.

View Article and Find Full Text PDF

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) is of great interest as a promising metal-free electrode material for future electronic devices. Several printing techniques have been developed to generate PEDOT:PSS patterns. In this study, we introduced a silicon-based hardener into PEDOT:PSS composites to prepare conductive ink for the purpose of fabricating solvent-resistant PEDOT:PSS composite patterns.

View Article and Find Full Text PDF

Organic thermoelectric (TE) materials have great potential as sustainable energy sources for powering flexible and wearable electronic devices via harvesting of human body heat. Recent advances in soluble conjugated polymer/carbon nanotube (CNT) composites have facilitated achievement of high TE power factors. However, the effects of conjugated polymers on the debundling and electrical percolation of CNTs and on the TE properties of their composites are not yet fully understood.

View Article and Find Full Text PDF

We report a flexible hydrogen sensing platform based on a single-strand yarn consisting of high-density electrospun nanofibers, on which nanograined Pd or Pd@Pt is coated via yarn spinning followed by sputter deposition. In general, Pd undergoes a phase transition to PdH (α-PdH at [H] < 1% and β-PdH at [H] > 2%), in which H atoms act as electron scattering centers, thus increasing the resistance. In our system, the sensors exhibit switchable H sensing behaviors, that is, (i) Δ R/ R > 0 at [H] > 1% by the active electron scattering and (ii) Δ R/ R < 0 at [H] < 1% derived from nanograined Pd effects.

View Article and Find Full Text PDF

In this work, we characterized poly(quinacridone-diphenylquinoxaline) (PQCTQx). PQCTQx was synthesized by a Suzuki coupling reaction and the synthesized PQCTQx was used as a polymeric semiconducting material in organic field-effect transistors (OFETs) to research the potential of using quinacridone derivatives. The measured field-effect mobility of the pristine PQCTQx film was 6.

View Article and Find Full Text PDF

Multi-heterogeneous oxide sensing layers, i.e., NiO/Fe2O3 catalyst loaded SnO2 fiber-in-tube nanostructures (NiO/Fe2O3-FITs), were rationally synthesized from an electrospinning solution containing a bio-inspired chitosan-bimetal complex template.

View Article and Find Full Text PDF

The development of freestanding fiber-type chemiresistors, having high integration ability with various portable electronics including smart clothing systems, is highly demanding for the next-generation wearable sensing platforms. However, critical challenges stemming from the irreversible chemical sensing kinetics and weak reliability of the freestanding fiber-type chemiresistor hinder their practical use. In this work, for the first time, we report on the potential suitability of the freestanding and ultraporous reduced graphene oxide fiber functionalized with WO nanorods (porous WO NRs-RGO composite fiber) as a sensitive nitrogen dioxide (NO) detector.

View Article and Find Full Text PDF

Photoresponsive transistor memories that can be erased using light-only bias are of significant interest owing to their convenient elimination of stored data for information delivery. Herein, we suggest a strategy to improve light-erasable organic transistor memories, which enables fast "photoinduced recovery" under low-intensity light. CdSe quantum dots (QDs) whose surfaces are covered with three different organic molecules are introduced as photoactive floating-gate interlayers in organic transistor memories.

View Article and Find Full Text PDF

In this work, we introduce a chitosan-Pt complex (CS-Pt) as an effective template for catalytic Pt sensitization and creation of abundant mesopores in SnO2 nanofibers (NFs). The Pt particles encapsulated by the CS exhibit ultrasmall size (∼2.6 nm) and high dispersion characteristics due to repulsion between CS molecules.

View Article and Find Full Text PDF

A new type of chemiresistor, the impedance-transduced chemiresistor (ITCR), is described for the rapid analysis of glucose. The ITCR exploits porous, high surface area, fluorine-doped carbon nanofibers prepared by electrospinning of fluorinated polymer nanofibers followed by pyrolysis. These nanofibers are functionalized with a boronic acid receptor and stabilized by Nafion to form the ITCR channel for glucose detection.

View Article and Find Full Text PDF

PtO nanocatalysts-loaded SnO multichannel nanofibers (PtO-SnO MCNFs) were synthesized by single-spinneret electrospinning combined with apoferritin and two immiscible polymers, i.e., poly(vinylpyrrolidone) and polyacrylonitrile.

View Article and Find Full Text PDF

In this article, we report on the direct writing of multi-walled carbon nanotube (MWCNT) composite inks based on three different surfactants via the electrohydrodynamic (EHD) jet printing technique. All three surfactants, including two types of polymeric surfactants and an ionic surfactant, successfully dispersed the MWCNTs in the ink medium. Although the MWCNT composite with the ionic surfactant could not be printed by the EHD process, the MWCNT composites with polymeric surfactants could be successfully printed using this technique.

View Article and Find Full Text PDF

Physicochemical properties of Fujian Yongchun aged vinegar (FYAV) and Shanxi mature vinegar (SMV) were compared in terms of the fermentation methods applied and aging periods (3, 5, 8, and 10 years), and combined E-nose/E-tongue analyses were performed to assess their flavors. Compared with submerged fermentation-derived FYAV, solid-state fermentation-derived SMV showed higher values of pH, brix, soluble solids, total phenolic content, and antioxidant activity, but not total acidity or total organic acids. Aging period resulted in an increase in pH, total phenolic content, and antioxidant activity.

View Article and Find Full Text PDF