Publications by authors named "Yong-Il Jung"

We demonstrate the fabrication of solution based low temperature-processed p-type ZnO NRs doped with phosphorous by using a spin-on-dopant method coupled with a hydrothermal process. We confirmed the incorporation of phosphorous dopants into a ZnO crystal by analyzing SIMS profiles, together with the evolution of the photoluminescence spectra. It is further revealed that the electrical properties of the p-type ZnO/n-type Si heterojunction diode exhibited good rectifying behavior, confirming that p-type ZnO NRs were successfully formed.

View Article and Find Full Text PDF

In this study, we fabricated and characterized three dimensional (3D) silicon (Si)/zinc oxide (ZnO) hybrid subwavelength structures to investigate their antireflective properties. Si nanorods (SiNRs) were fabricated by electrochemical etching, and subsequentially we grew ZnO NRs on SiNR as templates by using hydrothermal synthesis. The morphological and optical properties of hybrid Si/ZnO subwavelength structures were investigated by scanning electron microscopy (SEM) and ultra violet-visible-near infrared (UV-VIS-NIR) spectrophotometer, respectively.

View Article and Find Full Text PDF

Surface plasmon (SP)-enhanced light emission mechanism has been investigated for the Ag-coated ZnO/Al2O3 core/shell nanorods (NRs). Structural characterizations showed that the ZnO NRs were covered by conformal Al2O3 layer and coated by Ag nanoparticles (NPs). The optical studies by photoluminescence (PL) showed abnormal variation of PL intensity with increasing the thickness of Al2O3.

View Article and Find Full Text PDF

Visible light-emitting Ce-doped ZnO nanorods [NRs] without a post thermal annealing process were grown by hydrothermal method on a Si (100) substrate at a low temperature of 90°C. The structural investigations of Ce-doped ZnO NRs showed that the Ce3+ ions were successfully incorporated into the ZnO lattice sites without forming unwanted Ce-related compounds or precipitates. The optical investigation by photoluminescence spectra shows that the doped Ce3+ ions in the ZnO NRs act as an efficient luminescence center at 540 nm which corresponds to the optical transition of 5d → 4f orbitals in the Ce3+ ions.

View Article and Find Full Text PDF