Publications by authors named "Yong-Ding Liu"

Aphantoxins from Aphanizomenon flos-aquae are frequently identified in eutrophic waterbodies worldwide. These toxins severely endanger environmental safety and human health due to the production of paralytic shellfish poisons (PSPs). Although the molecular mechanisms of aphantoxin neurotoxicity have been studied, many questions remain to be resolved such as in vivo alterations in branchial histology and neurotransmitter inactivation induced by these neurotoxins.

View Article and Find Full Text PDF

Aphanizomenon flos-aquae secretes paralytic shellfish poisons (PSPs), termed aphantoxins, and endangers environmental and human health via eutrophication of water worldwide. Although the molecular mechanism of neuronal PSP toxicity has been well studied, several issues remain unresolved, notably the in vivo hepatic antioxidative responses to this neurotoxin. Aphantoxins extracted from a natural isolate of A.

View Article and Find Full Text PDF

Aphanizomenon flos-aquae is a cyanobacterium that produces neurotoxins or paralytic shellfish poisons (PSPs) called aphantoxins, which present threats to environmental safety and human health via eutrophication of water bodies worldwide. Although the molecular mechanisms of this neurotoxin have been studied, many questions remain unsolved, including those relating to in vivo hepatic neurotransmitter inactivation, physiological detoxification and histological and ultrastructural alterations. Aphantoxins extracted from the natural strain of A.

View Article and Find Full Text PDF

Aphanizomenon flos-aquae is a cyanobacterium that is frequently encountered in eutrophic waters worldwide. It is source of neurotoxins known as aphantoxins or paralytic shellfish poisons (PSPs), which present a major threat to the environment and human health. The molecular mechanism of PSP action is known, however the in vivo effects of this neurotoxin on oxidative stress, lipid peroxidation and the antioxidant defense responses in zebrafish brain remain to be understood.

View Article and Find Full Text PDF

The strategy promoted pollutant degradation and transformation under the anaerobic circumstance by adding nitrate as an electron acceptor has been widely used in sediment bioremediation. However, few literature reports on organic removal characteristics and microbial community responses in the contaminated river sediment under the nitrate reduction condition. Methods including the polar and non-polar chemical fractionation, relative abundance detection of organic matters by GC-MS were combined and applied to investigate organic removals and PCR-DGGE analysis was used for microbial community structures in sediment incubation systems with or without calcium nitrate addition.

View Article and Find Full Text PDF

Aphanizomenon flos-aquae (A. flos-aquae) is a source of neurotoxins known as aphantoxins or paralytic shellfish poisons (PSPs) that present a major threat to the environment and to human health. Generally, altered neurological function is reflected in behavior.

View Article and Find Full Text PDF

Low temperature and light are noticeable environmental conditions commonly experienced by cyanobacterial crusts growing in desert areas. Here we reported the effects of low temperature and light on the morphology, physiological characteristics and ultrastructural changes of artificial cyanobacterial crust. Firstly artificial cyanobacterial crusts were formed by inoculating Microcoleus vaginatus Gom.

View Article and Find Full Text PDF

In arid and semiarid areas, water uptake (non-rainfall water) serves as an important water source for plants, biological soil crusts, insects and small animals. In this study, a measurement program was undertaken to investigate water uptake and its changes during formation of man-made algal crusts in the Qubqi Desert. In the study region, water uptake from the atmosphere accounted for 25.

View Article and Find Full Text PDF

UV-B-induced oxidative damage and the protective effect of exopolysaccharides (EPS) in Microcoleus vaginatus, a cyanobacterium isolated from desert crust, were investigated. After being irradiated with UV-B radiation, photosynthetic activity (Fv/Fm), cellular total carbohydrates, EPS and sucrose production of irradiated cells decreased, while reducing sugars, reactive oxygen species (ROS) generation, malondialdehyde (MDA) production and DNA strand breaks increased significantly. However, when pretreated with 100 mg/L exogenous EPS, EPS production in the culture medium of UV-B stressed cells decreased significantly; Fv/Fm, cellular total carbohydrates, reducing sugars and sucrose synthase (SS) activity of irradiated cells increased significantly, while ROS generation, MDA production and DNA strand breaks of irradiated cells decreased significantly.

View Article and Find Full Text PDF

This study was undertaken to investigate the role of the glutathione-involved detoxifying mechanism in defending the tobacco BY-2 suspension cells against microcystin-RR (MC-RR). Analysis showed that exposure of the cells to different concentrations of MC-RR (0.1, 1 and 10 microg/mL) for 0-6 days resulted in a time and concentration-dependent decrease in cell viability and increase in reactive oxygen species (ROS) content.

View Article and Find Full Text PDF

Soil cyanobacterial crusts occur throughout the world, especially in the semiarid and arid regions. It always encounters sand burial, which is an important feature of mobile sand dunes. A greenhouse study was conducted to determine the effects of sand burial on biomass, chlorophyll fluorescence and extracellular polysaccharides of man-made cyanobacterial crusts in six periods of time (0, 5, 10, 15, 20 and 30 d after burying) and at five depths (0, 0.

View Article and Find Full Text PDF

Changes in growth, photosynthetic pigments, and photosystem II (PS II) photochemical efficiency as well as production of siderophores of Microcystis aeruginosa and Microcystis wesenbergii were determined in this experiment. Results showed growths of M. aeruginosa and M.

View Article and Find Full Text PDF

The toxicity of hepatotoxic microcystins produced mainly by Microcystis aeruginosa in mammals and fishes was well studied in recent years. However, there were scarcely reports in toxic effects of microcystins on isolated hepatocytes of fishes, especially investigation of microcystin-induced apoptosis and/or necrosis in carp hepatocytes. In the present study, the isolated hepatocytes of common carp were exposed to various concentrations of microcystins (0.

View Article and Find Full Text PDF

It was found that reactive oxygen species in Anabaena cells increased under simulated microgravity provided by clinostat. Activities of intracellular antioxidant enzymes, such as superoxide dismutase, catalase were higher than those in the controlled samples during the 7 days' experiment. However, the contents of glutathione [correction of gluathione], an intracellular antioxidant, decreased in comparison with the controlled samples.

View Article and Find Full Text PDF

Three enclosures (10 x 10 x 1.5-1.3 m in depth) were set beside Dianch Lake, Kunming, People's Republic of China, for the period from July 28 to August 26, 2002.

View Article and Find Full Text PDF

Freshwater Microcystis may form dense blooms in eutrophic lakes. It is known to produce a family of related cyclic hepatopeptides (microcystins, MC) that constitute a threat to aquatic ecosystems. Most toxicological studies of microcystins have focused on aquatic animals and plants, with few examining the possible effects of microcystins on phytoplankton.

View Article and Find Full Text PDF

In cyanobacteria, the isiA gene is required for cell adaptation to oxidative damage caused by the absence of iron. We show here that a putative Ser/Thr kinase gene, pkn22 (alr2052), is activated by iron deficiency and oxidative damage in Anabaena sp. PCC 7120.

View Article and Find Full Text PDF

Objective. To provide direct evidences for effects of microgravity on structure and function of plasma membrane. Method.

View Article and Find Full Text PDF