Interfacing magnetism with superconducting condensates are promising candidates holding Majorana bound states with which fault-tolerant quantum computation could be implemented. Within this field, understanding the detailed dynamics is important both for fundamental reasons and for the development of innovative quantum technologies. Herein, motivated by a molecular magnet TbPcinteracting with a superconducting Pb(111) substrate, which results in spin-orbital Yu-Shiba-Rusinov (YSR) states, as is affirmed by a theoretical simulation with the aid of the numerical renormalization group technique (see Xia20226388), we study the YSR states and quantum phase transitions (QPTs) in a bipartite molecular device adsorbed on ans-wave superconducting substrate.
View Article and Find Full Text PDFTransition-metal phosphorus trichalcogenides have been considered as very promising two-dimensional (2D) magnetic candidates up-to-date. We performed a systematical first-principles study on the electronic structures and magnetic properties of pristine MnPX(X = S and Se) and Janus MnPSSemonolayers. All monolayers behave as a direct-band-gap semiconductor in antiferromagnetic ground state which is caused by strong direct and indirect exchange interactions.
View Article and Find Full Text PDFThe electronic structures and optical properties of two-dimensional (2D) ZnO monolayers in a series of configurations were systematically investigated by first-principles calculations with Hubbardevaluated by the linear response approach. Three types of 2D ZnO monolayers, as planer hexagonal-honeycomb (Plan), double-layer honeycomb (Dlhc), and corrugated tetragonal (Tile) structures, show a mechanical and dynamical stability, while the Dlhc-ZnO is the most energetically stable configuration and Plan-ZnO is the second one. Each 2D ZnO monolayer behaves as a semiconductor with that Plan-, Dlhc-ZnO have a direct band gap of 1.
View Article and Find Full Text PDFRegulating the physical properties such as the quantum phase and the Kondo effect of molecular electronic devices near critical points may play a key role in increasing the robustness of quantum memory, which is a crucial component in quantum information processing. Molecules with a triangular topology are ideal prototypes to reveal the competition among magnetic frustration, Kondo screening, and local inter-molecule exchange interactions. Herein, motivated by a recent work investigating the single-electron tunneling through a redox-active edge-fused porphyrin trimer by using a Hubbard dimer model [J.
View Article and Find Full Text PDFThe precise manipulation of the quantum states of individual atoms/molecules adsorbed on metal surfaces is one of the most exciting frontiers in nanophysics, enabling us to realize novel single molecular logic devices and quantum information processing. Herein, by modeling an iron phthalocyanine molecule adsorbed on the Au(111) surface with a two-impurity Anderson model, we demonstrate that the quantum states of such a system could be adjusted by the uniaxial magnetic anisotropy . For negative , the ground state is dominated by a parallel configuration of the component of local spins, whereas it turns to be an antiparallel one when becomes positive.
View Article and Find Full Text PDFInteractions between quantum systems and their environments may always result in inevitable decoherence. Isolation of the quantum system from the undesired environmental noise is a great challenge for ideal quantum information processing. Herein, based on a parallelly shaped control-target molecular nanomagnet structure, we report a novel strategy which decouples the target molecular device from its surrounding conduction baths.
View Article and Find Full Text PDFMolecular magnetic compounds, which combine the advantages of nanoscale behaviors with the properties of bulk magnetic materials, are particularly attractive in the fields of high-density information storage and quantum computing. Before molecular electronic devices can be fabricated, a crucial task is the measurement and understanding of the transport behaviors. Herein, we consider a magnetic molecular trimer sandwiched between two metal electrodes, and, with the aid of the sophisticated full density matrix numerical renormalization group (FDM-NRG) technique, we study the effect of magnetic anisotropy on the charge transport properties, illustrated by the local density of states (LDOS, which is proportional to the differential conductance), the Kondo effect, and the temperature and inter-monomer hopping robustness.
View Article and Find Full Text PDFThe use of the molecular spin state as a quantum of next-generation information technology is receiving impressive research attention, within which the fundamental issues include manipulating the phase transition between the spin-up and -down states and generating spin polarized current. The spinterface between ferromagnetic electrodes and a molecular bridge represents one of the most intriguing elements in this context. Herein, by means of the celebrated numerical renormalization group technique, we present an original way to realize spin reversal in a monomeric dimer.
View Article and Find Full Text PDFMolecular spintronics devices are receiving extensive research attention, due to their potential applications as the smallest memory and logic elements. A most fundamental issue in this field lies in generating spin polarized currents. In this communication, with the aid of the celebrated Wilson's numerical renormalization group (NRG) method, we propose theoretically a novel strategy to induce a local magnetic field that only affects the strongly correlated molecule under consideration, and could easily be manipulated through purely electronic technologies.
View Article and Find Full Text PDFThe electronic structure and magnetic properties of ten formamidinium transition metal iodides in the ground state and under strain have been studied. These formamidinium transition metal iodides have a stable cubic perovskite structure. In the ground state, FAVI3 is a spin gapless semiconductor, and FAScI3, FATiI3, FACrI3, FAFeI3, FACoI3 and FANiI3 are ferromagnetic half-metals.
View Article and Find Full Text PDFMetal-molecule-metal junction is considered the basing block and key element of molecular spintronic devices, within which to generate spin polarized currents is one of the most fundamental issues for quantum computation and quantum information. In this paper, by employing a parallel triple orbital molecule junction with large inter-orbital tunneling couplings, we propose theoretically a bidirectional spin filter where both spin-up and spin-down currents could be obtained by simply adjusting the external magnetic field to different regimes along a single direction, and the filtered efficiencies could reach almost 100%. The Zeeman effect and the occupancy switching for the bonding and anti-bonding states are found to be responsible for the spin selective transport.
View Article and Find Full Text PDFAb-initio calculations are performed to examine the electronic structures and magnetic properties of spin-polarized GaMnP ( = 0.03, 0.25, 0.
View Article and Find Full Text PDFQuantum dot system provides an ideal platform for quantum information processing, within which to demonstrate the quantum states is one of the most important issue for quantum simulation and quantum computation. In this paper, we report a peculiar electron state in a parallel triple dot device where the Ruderman-Kittel-Kasuya-Yosida interaction is invalid when the level differences of the dots sweep into appropriate regime. This extraordinary tendency then results in an antiferromagnetic spin coupling between two of the dots and may lead to zero or full conductance, relying deeply on the relation of the two level spacings.
View Article and Find Full Text PDFJ Phys Condens Matter
November 2012
We study the quantum phase transition (QPT) and electronic transport in triple quantum dots for a wide range of the gate voltage ϵ. We focus on the effect of the interdot repulsion V and the magnetic field B. In the case of particle-hole (p-h) symmetry and B = 0, we find the local quadruplet-doublet transition of first order when V increases to a critical point V(c) ≈ U, where U is the on-site repulsion.
View Article and Find Full Text PDF