Numerous systemic diseases manifest with oral symptoms and signs. The molecular diagnosis of Alzheimer's disease (AD), the most prevalent neurodegenerative disease worldwide, currently relies on invasive or expensive methods, emphasizing the imperative for easily accessible biomarkers. In this study, we explored the expression patterns of key proteins implicated in AD pathophysiology within the taste buds of mice.
View Article and Find Full Text PDFTaste buds, the neuroepithelial organs responsible for the detection of gustatory stimuli in the oral cavity, arise from stem/progenitor cells among nearby basal keratinocytes. Using genetic lineage tracing, and were suggested as the specific markers for the stem/progenitor cells of taste buds, but recent evidence implied that taste buds may arise even in the absence of these markers. Thus, we wanted to verify the genetic lineage tracing of lingual - and -expressing cells.
View Article and Find Full Text PDFThe sense of taste arises from the detection of chemicals in food by taste buds, the peripheral cellular detectors for taste. Although numerous studies have extensively investigated taste buds, research on neural circuits from primary taste neurons innervating taste buds to the central nervous system has only recently begun owing to recent advancements in neuroscience research tools. This minireview focuses primarily on recent reports utilizing advanced neurogenetic tools across relevant brain regions.
View Article and Find Full Text PDFEpithelial sodium channel (ENaC) is responsible for regulating Na homeostasis. While its physiological functions have been investigated extensively in peripheral tissues, far fewer studies have explored its functions in the brain. Since our limited knowledge of ENaC's distribution in the brain impedes our understanding of its functions there, we decided to explore the whole-brain expression pattern of the Scnn1a gene, which encodes the core ENaC complex component ENaCα.
View Article and Find Full Text PDFAims: We investigated whether modulation of white adipose tissue (WAT) vasculature regulates rebound weight gain (RWG) after caloric restriction (CR) in mice fed a high-fat diet (HFD).
Main Methods: We compared changes in energy balance, hypothalamic neuropeptide gene expression, and characteristics of WAT by RT-qPCR, ELISA, immunohistochemistry, and adipose-derived stromal vascular fraction spheroid sprouting assay in obese mice fed a HFD ad libitum (HFD-AL), mice under 40 % CR for 3 or 4 weeks, mice fed HFD-AL for 3 days after CR (CRAL), and CRAL mice treated with TNP-470, an angiogenic inhibitor.
Key Findings: WAT angiogenic genes were expressed at low levels, but WAT vascular density was maintained in the CR group compared to that in the HFD-AL group.
Chemotherapy-induced cachexia causes severe metabolic abnormalities independently of cancer and reduces the therapeutic efficacy of chemotherapy. The underlying mechanism of chemotherapy-induced cachexia remains unclear. Here we investigated the cytarabine (CYT)-induced alteration in energy balance and its underlying mechanisms in mice.
View Article and Find Full Text PDFMetformin improves glucose regulation through various mechanisms in the periphery. Our previous study revealed that oral intake of metformin activates several brain regions, including the hypothalamus, and directly activates hypothalamic S6 kinase in mice. In this study, we aimed to identify the direct effects of metformin on glucose regulation in the brain.
View Article and Find Full Text PDFTaste receptors are responsible for detecting their ligands not only in taste receptor cells (TRCs) but also in non-gustatory organs. For several decades, many research groups have accumulated evidence for such "ectopic" expression of taste receptors. More recently, some of the physiologic functions (apart from taste) of these ectopic taste receptors have been identified.
View Article and Find Full Text PDFThe formylglycine-generating enzyme is a key regulator that converts sulfatase into an active form. Despite its key role in many diseases, enzyme activity inhibitors have not yet been reported. In this study, we investigated penta-peptide ligands for FGE activity inhibition and discovered two hit peptides.
View Article and Find Full Text PDFChemosensory receptors are expressed primarily in sensory organs, but their expression elsewhere can permit ligand detection in other contexts that contribute to survival. The ability of sweet taste receptors to detect natural sugars, sugar alcohols, and artificial sweeteners suggests sweet taste receptors are involved in metabolic regulation in both peripheral organs and in the central nervous system. Our limited knowledge of sweet taste receptor expression in the brain, however, has made it difficult to assess their contribution to metabolic regulation.
View Article and Find Full Text PDFDynamic changes in adipose tissue blood flow (ATBF) with nutritional status play a role in the regulation of metabolic and endocrine functions. Activation of the sympathetic nervous system via β-adrenergic receptors (β-AR) contributes to the control of postprandial enhancement of ATBF. Herein, we sought to identify the role of each β-AR subtype in the regulation of ATBF in mice.
View Article and Find Full Text PDFEndocrinol Metab (Seoul)
June 2021
Taste sensation is the gatekeeper for direct decisions on feeding behavior and evaluating the quality of food. Nutritious and beneficial substances such as sugars and amino acids are represented by sweet and umami tastes, respectively, whereas noxious substances and toxins by bitter or sour tastes. Essential electrolytes including Na+ and other ions are recognized by the salty taste.
View Article and Find Full Text PDFNeuronal regulation of energy and bone metabolism is important for body homeostasis. Many studies have emphasized the importance of synaptic adhesion molecules in the formation of synapses, but their roles in physiology still await further characterization. Here, we found that the synaptic adhesion molecule Calsyntenin-3 (CLSTN3) regulates energy and bone homeostasis.
View Article and Find Full Text PDFAnimals must detect aversive compounds to survive. Bitter taste neurons express heterogeneous combinations of bitter receptors that diversify their response profiles, but this remains poorly understood. Here we describe groups of taste neurons in Drosophila that detect the same bitter compounds using unique combinations of gustatory receptors (GRs).
View Article and Find Full Text PDFRegulation of feeding is essential for animal survival. The pharyngeal sense organs can act as a second checkpoint of food quality, due to their position between external taste organs such as the labellum which initially assess food quality, and the digestive tract. Growing evidence provides support that the pharyngeal sensory neurons regulate feeding, but much is still unknown.
View Article and Find Full Text PDFBiochem Biophys Res Commun
January 2017
Tubby domain superfamily protein (TUSP) is a distant member of the Tubby-like protein (TULP) family. Although other TULPs play important roles in sensation, metabolism, and development, the molecular functions of TUSP are completely unknown. Here, we explore the function of TUSP in the Drosophila nervous system where it is expressed in all neurons.
View Article and Find Full Text PDFAnimals discriminate nutritious food from toxic substances using their sense of taste. Since taste perception requires taste receptor cells to come into contact with water-soluble chemicals, it is a form of contact chemosensation. Concurrent with that contact, mechanosensitive cells detect the texture of food and also contribute to the regulation of feeding.
View Article and Find Full Text PDFAlthough several neural pathways have been implicated in feeding behaviors in mammals [1-7], it remains unclear how the brain coordinates feeding motivations to maintain a constant body weight (BW). Here, we identified a neuropeptide pathway important for the satiety and BW control in Drosophila. Silencing of myoinhibitory peptide (MIP) neurons significantly increased BW through augmented food intake and fat storage.
View Article and Find Full Text PDFThe ability to detect toxic compounds in foods is essential for animal survival. However, the minimal subunit composition of gustatory receptors required for sensing aversive chemicals in Drosophila is unknown. Here we report that three gustatory receptors, GR8a, GR66a and GR98b function together in the detection of L-canavanine, a plant-derived insecticide.
View Article and Find Full Text PDFAnimals often must decide whether or not to consume a diet that contains competing attractive and aversive compounds. Here, using the fruit fly, Drosophila melanogaster, we describe a mechanism that influences this decision. Addition of bitter compounds to sucrose suppressed feeding behavior, and this inhibition depended on an odorant-binding protein (OBP) termed OBP49a.
View Article and Find Full Text PDFWe have fabricated an field effect transistor (FET)-type DNA charge sensor based on 0.5 microm standard complementary metal oxide semiconductor (CMOS) technology which can detect the deoxyribonucleic acid (DNA) probe's immobilization and information on hybridization by sensing the variation of drain current due to DNA charge and investigated its electrical characteristics. FET-type charge sensor for detecting DNA sequence is a semiconductor sensor measuring the change of electric charge caused by DNA probe's immobilization on the gate metal, based on the field effect mechanism of MOSFET.
View Article and Find Full Text PDF