Publications by authors named "Yong Soo Oh"

This paper presents a multicellular spheroid chip capable of forming and extracting three-dimensional (3D) spheroids using removable cell trapping barriers. Compared to the conventional macro-scale spheroid formation methods, including spinning, hanging-drop, and liquid-overlay methods, the recent micro-scale spheroid chips have the advantage of forming smaller spheroids with better uniformity. The recent micro spheroid chips, however, have difficulties in extracting the spheroids due to fixed cell trapping barriers.

View Article and Find Full Text PDF

The vapor-phase polymerization (VPP) of poly(3-hexylthiophene) (P3HT) was achieved successfully as an alternative method to conventional solution-based thin film fabrication. Using Fe(III)Cl(3).6H(2)O, a spontaneous reaction of 3-hexylthiophene monomers resulted in the rapid formation of conducting P3HT thin films directly on substrates, such as glass, indium-tin-oxide, and poly(ethylene terephthalate), at thicknesses ranging from 50 to 1000 nm.

View Article and Find Full Text PDF

In this paper, we report the catalytic activity of the Sn/Bi alloy beads and its acceleration of the exothermic epoxy curing reactions in various thermal conditions and bead compositions. As being used as low-melting solder balls in electronic interconnection processes with various epoxy systems, it was found that the Sn/Bi beads substantially lowered the exothermic peak temperature of the diglycidyl ether of bisphenol A (DGEBA)/anhydride systems in up to ca. 140 degrees C depending on different types of anhydride curing agents.

View Article and Find Full Text PDF

In this study, we attempt to present a direct synthesis of narrowly dispersed silver nanoparticles in a highly concentrated organic phase (>2 M) without the use of a size-selection process. The fully organic phase system contains silver nitrate as a silver precursor, n-butylamine as a medium dissolving the silver salt, dodecanoic acid as a capping molecule, toluene as a medium, and NaBH4 as a reducing reagent. Even using only generic chemicals, monodisperse silver nanocrystals with a size of 7 nm were easily synthesized on the 100-g scale in a 1-L reactor.

View Article and Find Full Text PDF