Publications by authors named "Yong Seok Oh"

Article Synopsis
  • - The hippocampus operates through a special neural circuit involving different types of neurons (CA PNs and dentate granule cells) that vary in function based on their location in the brain.
  • - CA PNs are known to affect cognitive and emotional behaviors by sending projections to regions outside the hippocampus, such as the frontal cortex and amygdala, but specific differences in these projections based on neuron type and location haven't been fully studied yet.
  • - This study used advanced labeling techniques in mice to map the distinct projection patterns of CA PNs, revealing that CA1 PNs mainly send signals to areas like the frontal cortex, while CA2 and CA3 PNs have different projection patterns, highlighting their unique functions based on their
View Article and Find Full Text PDF
Article Synopsis
  • Retinoic acid (RA), derived from vitamin A, is important for neuroplasticity in the adult brain, particularly in the hippocampus, which is crucial for memory.
  • This study focused on identifying RA-responsive granule cells (GCs) in the mouse hippocampus, revealing that they are less active in response to new environments.
  • Chronic lack of RA leads to increased GC activity in novel situations and negatively affects spatial discrimination, but these cognitive impairments can be reversed with RA restoration.
View Article and Find Full Text PDF

Glutamatergic mossy cells (MCs) mediate associational and commissural connectivity, exhibiting significant heterogeneity along the septotemporal axis of the mouse dentate gyrus (DG). However, it remains unclear whether the neuronal features of MCs are conserved across mammals. This study compares the neuroanatomy of MCs in the DG of mice and monkeys.

View Article and Find Full Text PDF

Fear overgeneralization is a maladaptive response to traumatic stress that is associated with the inability to discriminate between threat and safety contexts, a hallmark feature of post-traumatic stress disorder (PTSD). However, the neural mechanisms underlying this deficit remain unclear. Here, we show that traumatic stress exposure impairs contextual discrimination between threat and safety contexts in the learned helplessness (LH) model.

View Article and Find Full Text PDF

An early diagnosis of Alzheimer's disease is crucial as treatment efficacy is limited to the early stages. However, the current diagnostic methods are limited to mid or later stages of disease development owing to the limitations of clinical examinations and amyloid plaque imaging. Therefore, this study aimed to identify molecular signatures including blood plasma extracellular vesicle biomarker proteins associated with Alzheimer's disease to aid early-stage diagnosis.

View Article and Find Full Text PDF

Levodopa, a dopamine prodrug, alleviates the motor symptoms of Parkinson's disease (PD), but its chronic use gives rise to levodopa-induced dyskinesia (LID). However, it remains unclear whether levodopa pharmacodynamics is altered during the progressive onset of LID. Using fast-scan cyclic voltammetry and second-derivative-based background drift removal, we continuously measured tonic dopamine levels using high temporal resolution recording over 1-h.

View Article and Find Full Text PDF

Functional restoration by the re-establishment of cellular or neural connections remains a major challenge in targeted cell therapy and regenerative medicine. Recent advances in magnetically powered microrobots have shown potential for use in controlled and targeted cell therapy. In this study, a magnetic neurospheroid (Mag-Neurobot) that can form both structural and functional connections with an organotypic hippocampal slice (OHS) is assessed using an ex vivo model as a bridge toward in vivo application.

View Article and Find Full Text PDF

S100A10 (p11) is an emerging player in the neurobiology of depression and antidepressant actions. p11 was initially thought to be a modulator of serotonin receptor (5-HTR) trafficking and serotonergic transmission, though newly identified binding partners of p11 and neurobiological studies of these proteins have shed light on multifunctional roles for p11 in the regulation of glutamatergic transmission, calcium signaling and nuclear events related to chromatin remodeling, histone modification, and gene transcription. This review article focuses on direct binding partners of p11 in the brain including 5-HTRs, mGluR5, annexin A2, Ahnak, Smarca3, and Supt6h, as well as their roles in neuronal function, particularly in the context of depressive-like behavior as well as behavioral effects of antidepressant drug treatments in mice.

View Article and Find Full Text PDF

The dysregulation of dopamine, a neuromodulator, is associated with a broad spectrum of brain disorders, including Parkinson's disease, addiction, and schizophrenia. Quantitative measurements of dopamine are essential for understanding dopamine functional dynamics. Fast-scan cyclic voltammetry (FSCV) is the most popular electrochemical technique for measuring real-time in vivo dopamine level changes.

View Article and Find Full Text PDF

Insulin in the brain is a well-known critical factor in neuro-development and regulation of adult neurogenesis in the hippocampus. The abnormality of brain insulin signaling is associated with the aging process and altered brain plasticity, and could promote neurodegeneration in the late stage of Alzheimer's disease (AD). The precise molecular mechanism of the relationship between insulin resistance and AD remains unclear.

View Article and Find Full Text PDF

Background And Purpose: There is a scarcity of information regarding the role of prothrombin kringle-2 (pKr-2), which can be generated by active thrombin, in hippocampal neurodegeneration and Alzheimer's disease (AD).

Experimental Approach: To assess the role of pKr-2 in association with the neurotoxic symptoms of AD, we determined pKr-2 protein levels in post-mortem hippocampal tissues of patients with AD and the hippocampi of five familial AD (5XFAD) mice compared with those of age-matched controls and wild-type (WT) mice, respectively. In addition, we investigated whether the hippocampal neurodegeneration and object memory impairments shown in 5XFAD mice were mediated by changes to pKr-2 up-regulation.

View Article and Find Full Text PDF

Background And Purpose: We recently reported that AAV1-Rheb(S16H) transduction could protect hippocampal neurons through the induction of brain-derived neurotrophic factor (BDNF) in the rat hippocampus in vivo. It is still unclear how neuronal BDNF produced by AAV1-Rheb(S16H) transduction induces neuroprotective effects in the hippocampus and whether its up-regulation contributes to the enhance of a neuroprotective system in the adult brain.

Experimental Approach: To determine the presence of a neuroprotective system in the hippocampus of patients with Alzheimer's disease (AD), we examined the levels of glial fibrillary acidic protein, BDNF and ciliary neurotrophic factor (CNTF) and their receptors, tropomyocin receptor kinase B (TrkB) and CNTF receptor α(CNTFRα), in the hippocampus of AD patients.

View Article and Find Full Text PDF

Adiponectin (Ad) is a representative adipocytokine that regulates energy homeostasis including glucose transport and lipid oxidation through activation of AMP-activated protein kinase (AMPK) pathways. Plasma levels of Ad are reduced in obesity, which contributes to type 2 diabetes. Therefore, agents that activate the Ad signaling pathway could ameliorate metabolic diseases such as type 2 diabetes.

View Article and Find Full Text PDF

Current chemotherapy regimens have certain limitations in improving the survival rates of patients with advanced ovarian cancer. Hepatocyte growth factor (HGF) is important in ovarian cancer cell migration and invasion. This study assessed the effects of YYB-101, a humanized monoclonal anti-HGF antibody, on the growth and metastasis of ovarian cancer cells.

View Article and Find Full Text PDF

Most antidepressants, including selective serotonin reuptake inhibitors (SSRIs), initiate their drug actions by rapid elevation of serotonin, but they take several weeks to achieve therapeutic onset. This therapeutic delay suggests slow adaptive changes in multiple neuronal subtypes and their neural circuits over prolonged periods of drug treatment. Mossy cells are excitatory neurons in the dentate hilus that regulate dentate gyrus activity and function.

View Article and Find Full Text PDF

Previously, we reported an agonist antibody to a cytokine receptor, Thrombopoietin receptor (TPOR) that effectively induces cytotoxic killer cells from precursor tumor cells isolated from newly diagnosed AML patients. Here, we show that the TPOR agonist antibody can induce even relapsed AML cells into killer cells more potently than newly diagnosed AML cells. After stimulation by the agonist antibody, these relapsed leukemic cells enter into a differentiation process of killer cells.

View Article and Find Full Text PDF

Parkinson's disease (PD) and Alzheimer's disease exhibit common features of neurodegenerative diseases and can be caused by numerous factors. A common feature of these diseases is neurotoxic inflammation by activated microglia, indicating that regulation of microglial activation is a potential mechanism for preserving neurons in the adult brain. Recently, we reported that upregulation of prothrombin kringle-2 (pKr-2), one of the domains that make up prothrombin and which is cleaved and generated by active thrombin, induces nigral dopaminergic (DA) neuronal death through neurotoxic microglial activation in the adult brain.

View Article and Find Full Text PDF

Depression is a leading cause of disability. Current pharmacological treatment of depression is insufficient, and development of improved treatments especially for treatment-resistant depression is desired. Understanding the neurobiology of antidepressant actions may lead to development of improved therapeutic approaches.

View Article and Find Full Text PDF

Brain-specific angiogenesis inhibitors (BAIs) 1, 2, and 3 are members of the adhesion G protein-coupled receptors, subfamily B, which share a conserved seven-transmembrane structure and an N-terminal extracellular domain. In cell- and animal-based studies, these receptors have been shown to play diverse roles under physiological and pathological conditions. BAI1 is an engulfment receptor and performs major functions in apoptotic-cell clearance and interacts (as a pattern recognition receptor) with pathogen components.

View Article and Find Full Text PDF

Interleukin-5 (IL-5) is best known as key regulator in eosinophil-associated diseases such as asthma. While a connection to vascular changes in eosinophil-associated lung diseases is still elusive, recent evidence suggests that IL-5 may have an atheroprotective role. Here, we report an unexpected anti-angiogenic potential of IL-5 on vascular endothelial cells in vitro.

View Article and Find Full Text PDF

The role of astrocyte elevated gene-1 (AEG-1) in nigral dopaminergic (DA) neurons has not been studied. Here we report that the expression of AEG-1 was significantly lower in DA neurons in the postmortem substantia nigra of patients with Parkinson's disease (PD) compared to age-matched controls. Similarly, decreased AEG-1 levels were found in the 6-hydroxydopamine (6-OHDA) mouse model of PD.

View Article and Find Full Text PDF

We recently reported that adeno-associated virus serotype 1 (AAV1) transduction of murine nigral dopaminergic (DA) neurons with constitutively active ras homolog enriched in brain with a mutation of serine to histidine at position 16 [Rheb(S16H)] induced the production of neurotrophic factors, resulting in neuroprotective effects on the nigrostriatal DA system in animal models of Parkinson's disease (PD). To further investigate whether AAV1-Rheb(S16H) transduction has neuroprotective potential against neurotoxic inflammation, which is known to be a potential event related to PD pathogenesis, we examined the effects of Rheb(S16H) expression in nigral DA neurons under a neurotoxic inflammatory environment induced by the endogenous microglial activator prothrombin kringle-2 (pKr-2). Our observations showed that Rheb(S16H) transduction played a role in the neuroprotection of the nigrostriatal DA system against pKr-2-induced neurotoxic inflammation, even though there were similar levels of pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α) and interleukin-1-beta (IL-1β), in the AAV1-Rheb(S16H)-treated substantia nigra (SN) compared to the SN treated with pKr-2 alone; the neuroprotective effects may be mediated by the activation of neurotrophic signaling pathways following Rheb(S16H) transduction of nigral DA neurons.

View Article and Find Full Text PDF

Lysophosphatidic acid (LPA) has been implicated in the pathology of human ovarian cancer. This phospholipid elicits a wide range of cancer cell responses, such as proliferation, trans-differentiation, migration, and invasion, via various G-protein-coupled LPA receptors (LPARs). Here, we explored the cellular signaling pathway via which LPA induces migration of ovarian cancer cells.

View Article and Find Full Text PDF
Article Synopsis
  • Silibinin, a compound from milk thistle, is known to protect the adult brain from neurodegeneration, but its effects on epilepsy were previously untested.
  • In a mouse model of epilepsy induced by kainic acid, silibinin was administered before and after seizure induction to evaluate its impact.
  • The findings showed that silibinin reduced seizure frequency and brain damage while promoting neuroprotection, indicating its potential as a natural treatment for epilepsy.
View Article and Find Full Text PDF

NHERF1/EBP50 (Na/H exchanger regulating factor 1; Ezrin-binding phosphoprotein of 50 kDa) organizes stable protein complexes beneath the apical membrane of polar epithelial cells. By contrast, in cancer cells without any fixed polarity, NHERF1 often localizes in the cytoplasm. The regulation of cytoplasmic NHERF1 and its role in cancer progression remain unclear.

View Article and Find Full Text PDF