Singlet oxygen is a toxic chemical but powerful oxidant, exploited in many chemical and biological applications. However, the lifetime of singlet oxygen in air under atmospheric conditions is yet to be known. This has limited safe usage of singlet oxygen in air, despite being a strong antimicrobial agent with the unique property of relaxing to breathable oxygen after serving its purpose.
View Article and Find Full Text PDFPhotodynamic therapy has been efficiently applied for cancer therapy. Here, we have fabricated the folic acid (FA)- and pheophorbide A (PA)-conjugated FA/PA@FeO nanoparticle (smart hybrid nanocomposite, SHN) to enhance the photodynamic inactivation (PDI) of specific cancer cells. SHN coated with the PDI agent is designed to have selectivity for the folate receptor (FR) expressed on cancer cells.
View Article and Find Full Text PDFWe report a detailed analysis of singlet oxygen generated from the photofunctional polymer film (PFPF) matrix which is the silicone polymer film (PDMS) embedded with a photosensitizer. Activation and deactivation dynamics of singlet oxygen generated from PFPFs were investigated with time-resolved phosphorescence spectroscopy. The singlet oxygen generated from PFPFs was dissipated into three different regions of the polymer matrix; the inside (component A), the surface (component B), and the outside (component C).
View Article and Find Full Text PDFBackground/aims: Far-infrared (FIR) irradiation has been reported to exhibit various biological effects including improvement of cardiovascular function. However, its effect on the differentiation of stem cells has not been studied. Using tonsil-derived mesenchymal stem cells (TMSC), we examined whether and how FIR irradiation affects adipogenic or osteogenic differentiation.
View Article and Find Full Text PDFTo inactivate methicillin-resistant Staphylococcus aureus (MRSA) with minimum damage to host cells and tissue, target-oriented photofunctional nanoparticles (TOPFNs) were fabricated and characterized. MRSA is a predominant infective pathogen even in hospital and non-hospital environments due to its ability to develop high levels of resistance to several classes of antibiotics through various pathways. To solve this major problem, photodynamic inactivation (PDI) method applies to treat antibiotic-resistant bacteria.
View Article and Find Full Text PDFDiagnostic exome sequencing (DES) is a powerful tool to analyze the pathogenic variants leading to development delay (DD) and intellectual disability (ID). Recently, heterozygous mutation of the histone acetyltransferase encoding gene has been recognized as causing a syndrome with congenital anomalies and intellectual disability, namely Say-Barber-Biesecker-Young-Simpson (SBBYS) syndrome. Here we report a case of SBBYS syndrome in a third generation Korean family affected with a missense mutation in , c.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2017
We investigated the antimalarial effect of photodynamic inactivation (PDI) coupled with magnetic nanoparticles (MNPs) as a potential strategy to combat the emergence of drug-resistant malaria and resurgence of malaria after treatment. Because the malarial parasite proliferates within erythrocytes, PDI agents need to be taken up by erythrocytes to eradicate the parasite. We used photofunctional MNPs as the PDI agent because nanosized particles were selectively taken up by Plasmodium-infected erythrocytes and remained within the intracellular space due to the enhanced permeability and retention effect.
View Article and Find Full Text PDFThis study demonstrates the application feasibility of electrochemical impedance spectroscopy (EIS) in measuring estrogen (17-estradiol) in gas phase. The present biosensor gives a linear response ( = 0.999) for 17-estradiol vapor concentration from 3.
View Article and Find Full Text PDFThe principle of photodynamic treatment (PDT) involves the administration of photosensitizer (PS) at diseased tissues, followed by light irradiation to produce reactive oxygen species (ROS). In cells, a moderate increase in ROS plays an important role as signaling molecule to promote cell proliferation, whereas a severe increase of ROS causes cell damage. Previous studies have shown that low levels of ROS stimulate cell growth through PS drugs-treating PDT and nonthermal plasma treatment.
View Article and Find Full Text PDFIn tetraplegia patients, activities of daily living are highly dependent on the remaining upper limb functions. In other countries, upper limb reconstruction surgery to improve function has been applied to diverse cases, but few cases have been reported in Korea. The current authors experienced a case of posterior deltoid-to-triceps tendon transfer and rehabilitation in a complete spinal cord injury with a C6 neurologic level, and we introduce the case-a 36-year-old man-with a literature review.
View Article and Find Full Text PDFThe photocatalytic activity and photostability of CdS quantum dot (QD) can be remarkably enhanced by hybridization with Rh-substituted layered titanate nanosheet even at very low Rh substitution rate (<1%). Mesoporous CdS-Ti(5.2-x)/6 Rhx/2O2 nanohybrids are synthesized by a self-assembly of exfoliated Ti(5.
View Article and Find Full Text PDFObjective: To evaluate the effect of post-stroke depression (PSD) on rehabilitation outcome and to investigate the risk factors of PSD, especially, the role of caregivers type (family or professional) in subacute stroke patients.
Methods: Two hundred twenty-six stroke patients were enrolled retrospectively. All the subjects' basic characteristics, Korean version of the Beck Depression Inventory (K-BDI), Korean version of the Modified Barthel Index (K-MBI), and the modified Rankin Scale (mRS) were recorded when the patient was transferred into the Department of Rehabilitation Medicine and at the time of discharge.
Background & Objectives: PFGE, rep-PCR, and MLST are widely used to identify related bacterial isolates and determine epidemiologic associations during outbreaks. This study was performed to compare the ability of repetitive sequence-based PCR (rep-PCR) and pulsed-field gel electrophoresis (PFGE) to determine the genetic relationships among Escherichia coli isolates assigned to various sequence types (STs) by two multilocus sequence typing (MLST) schemes.
Methods: A total of 41 extended-spectrum β-lactamase- (ESBL-) and/or AmpC β-lactamase-producing E.
Reactive oxygen species (ROS) play an important role in cellular signaling as second messengers. However, studying the role of ROS in physiological redox signaling has been hampered by technical difficulties in controlling their generation within cells. Here, we utilize two inert components, a photosensitizer and light, to finely manipulate the generation of intracellular ROS and examine their specific role in activating dendritic cells (DCs).
View Article and Find Full Text PDFObjective: To determine overall handgrip strength (HGS), we assessed the short-term change of HGS after trigger point injection (TPI) in women with muscular pain in the upper extremities by comparison with established pain scales.
Methods: The study enrolled 50 female patients (FMS with MPS group: 29 patients with combined fibromyalgia [FMS] and myofascial pain syndrome [MPS]; MPS group: 21 patients with MPS) who presented with muscular pain in the upper extremities at Konyang University Hospital. In addition, a total of 9 healthy women (control group) were prospectively enrolled in the study.
This study was performed to investigate the prevalence and molecular epidemiology of Pseudomonas aeruginosa isolates from Korea that produce enzymes with extended-spectrum (ES) activity to β-lactams. A total of 205 non-duplicate P. aeruginosa clinical isolates were collected from 18 university hospitals in Korea.
View Article and Find Full Text PDFJ Nanosci Nanotechnol
March 2013
Magnetic nanoparticles and fluorescent quantum dots (QDs) can make many effective applications in biomedical system. Here, we demonstrated one way of synthetic method and its surface modification to use for biomedical applications. Fe3O4 nanoparticles are well known as magnetic materials and its magnetic property can be used in magnetic resonance imaging (MRI), cell detection.
View Article and Find Full Text PDFWater-dispersible graphitic hollow spheres were synthesized using a soft chemical route under hydrothermal conditions by glucose carbonization using a magnetite/silica-encapsulated core-shell sphere as a template. Carbonization on the templates happens as the magnetite core is partially or completely eliminated depending on the reaction conditions. Therefore, nano-sized graphitic hollow spheres or magnetite-core-encapsulated graphitic shells could be obtained.
View Article and Find Full Text PDFNovel multifunctional magnetic particles (MMPs) conjugated with photosensitizer and vancomycin were fabricated by surface modification of Fe(3)O(4) particles. The capacities to target, capture and inactivate pathogenic bacteria and good biocompatibility suggest that the MMPs have great potentials as photodynamic inactivation agents for serious bacterial contamination.
View Article and Find Full Text PDFThe graphite encapsulation of metal alloy magnetic nanoparticles has attracted attention for biological applications because of the high magnetization of the encapsulated particles. However, most of the synthetic methods have limitations in terms of scalability and economics because of the demanding synthetic conditions and low yields. Here, we show that well controlled graphite-encapsulated FeCo core-shell nanoparticles can be synthesized by a hydrothermal method, simply by mixing Fe/Co with sucrose as a carbon source.
View Article and Find Full Text PDFNanohybrids of CdS-polyoxotungstate with strongly coupled electronic structures and visible-light-active photofunctions can be synthesized by electrostatically derived self-assembly of very small CdS quantum dots, or QDs, (particle size ≈ 2.5 nm) and polyoxotungstate nanoclusters (cluster size ≈1 nm). The formation of CdS-polyoxotungstate nanohybrids is confirmed by high-resolution transmission electron microscopy, elemental mapping, and powder X-ray diffraction analysis.
View Article and Find Full Text PDFWe report the fabrication of a novel titania membrane of the dual-pore system that is strategically designed and prepared by a two-step replication process and sol-gel reaction. The primary nanoporous channel structure is fabricated by the cage-like PMMA template (CPT) obtained from the nanoporous alumina membrane and the secondary mesoporous structure is formed by the sol-gel reaction of the lyotropic precursor solution within the CPT. Furthermore the mesoporous titania membrane (MTM) frame consists of the titania nanoparticles of 10-12 nm in diameter.
View Article and Find Full Text PDFChem Commun (Camb)
November 2008
Ultrasonic irradiation of core/shell structures was shown to lead to low toxicity and high quantum yields relative to thermal methods for bio-application.
View Article and Find Full Text PDFThe photophysical properties of Er(III) complexes coordinated with platinum[5,10,15-triphenyl-20-(4-carboxyphenyl)-porphyrin] (PtP) and terpyridine (tpy) ligands in organic solution were investigated. The Er(III) complex emitted sensitized near-IR (NIR) luminescence when the PtP ligands were excited under deoxygenated conditions. The quantum yield (PhiLn) of the sensitized luminescence was 0.
View Article and Find Full Text PDFUnique starlike CdS particles were prepared from the lyotropic triblock copolymer solution system. The starlike CdS consists of a spherical core and dozens of the attached conical nanolobes. From the comparative studies with the spherical and rod-shaped CdS nanoparticles, the unique photophysical property is presented for the starlike CdS particle.
View Article and Find Full Text PDF