multiple epidermal growth factor-like domains 8 (dMegf8) is a homolog of human encodes a multidomain transmembrane protein which is highly conserved across species. In humans, mutations cause a rare genetic disorder called Carpenter syndrome, which is frequently associated with abnormal left-right patterning, cardiac defects, and learning disabilities. is also associated with psychiatric disorders.
View Article and Find Full Text PDFTM2 domain containing (TM2D) proteins are conserved in metazoans and encoded by three separate genes in each model organism species that has been sequenced. Rare variants in TM2D3 are associated with Alzheimer's disease (AD) and its fly ortholog almondex is required for embryonic Notch signaling. However, the functions of this gene family remain elusive.
View Article and Find Full Text PDFWithin mammalian brain circuits, activity-dependent synaptic adaptations, such as synaptic scaling, stabilize neuronal activity in the face of perturbations. Stability afforded through synaptic scaling involves uniform scaling of quantal amplitudes across all synaptic inputs formed on neurons, as well as on the postsynaptic side. It remains unclear whether activity-dependent uniform scaling also operates within peripheral circuits.
View Article and Find Full Text PDFPerceived palatability of food controls caloric intake. Sweet taste is the primary means of detecting the carbohydrate content of food. Surprisingly, sweet taste sensitivity is responsive to extrinsic factors like diet, and this occurs by unknown mechanisms.
View Article and Find Full Text PDFInjury can lead to devastating and often untreatable chronic pain. While acute pain perception (nociception) evolved more than 500 million years ago, virtually nothing is known about the molecular origin of chronic pain. Here we provide the first evidence that nerve injury leads to chronic neuropathic sensitization in insects.
View Article and Find Full Text PDFNeuronal aging involves a progressive decline in cognitive abilities and loss of motor function. Mutations in human genes () lead to a wide-range of diseases including muscular dystrophy, peripheral neuropathy and progeria. Here we investigate the role of neuronal in regulating age-related phenotypes.
View Article and Find Full Text PDFRingmaker (Ringer) is homologous to the human Tubulin Polymerization Promoting Proteins (TPPPs) that are implicated in the stabilization and bundling of microtubules (MTs) that are particularly important for neurons and are also implicated in synaptic organization and plasticity. No functional data exist that have addressed the role of TPPP in synapse organization in any system. Here, we present the phenotypic and functional characterization of mutants during larval neuromuscular junction (NMJ) synaptic development.
View Article and Find Full Text PDFRecent studies find that sugar tastes less intense to humans with obesity, but whether this sensory change is a cause or a consequence of obesity is unclear. To tackle this question, we study the effects of a high sugar diet on sweet taste sensation and feeding behavior in Drosophila melanogaster. On this diet, fruit flies have lower taste responses to sweet stimuli, overconsume food, and develop obesity.
View Article and Find Full Text PDFNeurotransmission is a tightly regulated Ca-dependent process. Upon Ca influx, Synaptotagmin1 (Syt1) promotes fusion of synaptic vesicles (SVs) with the plasma membrane. This requires regulation at multiple levels, but the role of metabolites in SV release is unclear.
View Article and Find Full Text PDFWater intake is essential for survival and thus under strong regulation. Here, we describe a simple high throughput system to monitor water intake over time in Drosophila. The design of the assay involves dehydrating fly food and then adding water back separately so flies either eat or drink.
View Article and Find Full Text PDFNon-nutritive sweeteners like sucralose are consumed by billions of people. While animal and human studies have demonstrated a link between synthetic sweetener consumption and metabolic dysregulation, the mechanisms responsible remain unknown. Here we use a diet supplemented with sucralose to investigate the long-term effects of sweet/energy imbalance.
View Article and Find Full Text PDFPresynaptic resting Ca(2+) influences synaptic vesicle (SV) release probability. Here, we report that a TRPV channel, Inactive (Iav), maintains presynaptic resting [Ca(2+)] by promoting Ca(2+) release from the endoplasmic reticulum in Drosophila motor neurons, and is required for both synapse development and neurotransmission. We find that Iav activates the Ca(2+)/calmodulin-dependent protein phosphatase calcineurin, which is essential for presynaptic microtubule stabilization at the neuromuscular junction.
View Article and Find Full Text PDFMitochondrial fusion and fission affect the distribution and quality control of mitochondria. We show that Marf (Mitochondrial associated regulatory factor), is required for mitochondrial fusion and transport in long axons. Moreover, loss of Marf leads to a severe depletion of mitochondria in neuromuscular junctions (NMJs).
View Article and Find Full Text PDFSynaptic plasticity involves the modulation of synaptic connections in response to neuronal activity via multiple pathways. One mechanism modulates synaptic transmission by retrograde signals from the post-synapse that influence the probability of vesicle release in the pre-synapse. Despite its importance, very few factors required for the expression of retrograde signals, and proper synaptic transmission, have been identified.
View Article and Find Full Text PDFRhodopsins (Rhs) are light sensors, and Rh1 is the major Rh in the Drosophila photoreceptor rhabdomere membrane. Upon photoactivation, a fraction of Rh1 is internalized and degraded, but it remains unclear how the rhabdomeric Rh1 pool is replenished and what molecular players are involved. Here, we show that Crag, a DENN protein, is a guanine nucleotide exchange factor for Rab11 that is required for the homeostasis of Rh1 upon light exposure.
View Article and Find Full Text PDFTrans-synaptic adhesion between Neurexins (Nrxs) and Neuroligins (Nlgs) is thought to be required for proper synapse organization and modulation, and mutations in several human Nlgs have shown association with autism spectrum disorders. Here we report the generation and phenotypic characterization of Drosophila neuroligin 2 (dnlg2) mutants. Loss of dnlg2 results in reduced bouton numbers, aberrant presynaptic and postsynaptic development at neuromuscular junctions (NMJs), and impaired synaptic transmission.
View Article and Find Full Text PDFSNARE-mediated synaptic exocytosis is orchestrated by facilitatory and inhibitory mechanisms. Genetic ablations of Complexins, a family of SNARE-complex-binding proteins, in mice and Drosophila cause apparently opposite effects on neurotransmitter release, leading to contradictory hypotheses of Complexin function. Reconstitution experiments with different fusion assays and Complexins also yield conflicting results.
View Article and Find Full Text PDFSynaptic vesicle (SV) exo- and endocytosis are tightly coupled to sustain neurotransmission in presynaptic terminals, and both are regulated by Ca(2+). Ca(2+) influx triggered by voltage-gated Ca(2+) channels is necessary for SV fusion. However, extracellular Ca(2+) has also been shown to be required for endocytosis.
View Article and Find Full Text PDFIn an unbiased genetic screen designed to isolate mutations that affect synaptic transmission, we have isolated homozygous lethal mutations in Drosophila importin 13 (imp13). Imp13 is expressed in and around nuclei of both neurons and muscles. At the larval neuromuscular junction (NMJ), imp13 affects muscle growth and formation of the subsynaptic reticulum without influencing any presynaptic structural features.
View Article and Find Full Text PDFIn all nervous systems, short-term enhancement of transmitter release is achieved by increasing the weights of unitary synapses; in contrast, long-term enhancement, which requires nuclear gene expression, is generally thought to be mediated by the addition of new synaptic vesicle release sites. In Drosophila motor neurons, induction of AP-1, a heterodimer of Fos and Jun, induces cAMP- and CREB-dependent forms of presynaptic enhancement. Light and electron microscopic studies indicate that this synaptic enhancement is caused by increasing the weight of unitary synapses and not through the insertion of additional release sites.
View Article and Find Full Text PDFVAP proteins (human VAPB/ALS8, Drosophila VAP33, and C. elegans VPR-1) are homologous proteins with an amino-terminal major sperm protein (MSP) domain and a transmembrane domain. The MSP domain is named for its similarity to the C.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
November 2007
A novel serine protease with high purity was extracted from the venom of Agkistrodon hlays Pallas using monoclonal antibody affinity chromatography. This protease releases bradykinin and has arginine esterase activity without being activated. After purification, its hydrolytic activity exceeded 800 U/mg, far higher than its counterparts from mammalian sources.
View Article and Find Full Text PDFSchwann cells at the somatic neuromuscular junction possess adenosine receptors that when activated by the release of endogenous transmitter modulate quantal transmitter release. Recently, purinergic receptors have been shown to exist on Schwann cells of axon varicosities in visceral smooth muscle where they are activated by endogenous transmitters to give a calcium transient, although adenosine receptors were not identified. In the present work, we show that Schwann cells associated with axon varicosities of vascular smooth muscle, namely that of mesenteric blood vessels, possess both adenosine and purinergic receptors that when activated give rise to calcium transients in these cells.
View Article and Find Full Text PDF