Publications by authors named "Yong Q"

In order to understand the spatial-temporal distribution and ecological risk of antibiotics in the soil of an agricultural watershed in the Three Gorges Reservoir area, the topsoil samples were collected at 26 sites in the Wangjiagou small watershed, Fuling District, Chongqing in spring, summer, autumn, and winter of 2022, and 21 antibiotics with five classes were determined using solid phase extraction and ultra-performance liquid chromatography-tandem mass spectrometry. The content levels and spatial-temporal distribution of antibiotics were analyzed, the correlations between antibiotic contents and soil physicochemical factors were discussed, and the potential ecological risk of antibiotics in the soil was evaluated using the risk quotient method. The results showed that the detection rates of 21 antibiotics were 0-100% with the range of ND-219.

View Article and Find Full Text PDF

B-cell receptor-associated protein 31 (BCAP31) has protective effects against alveolar epithelial type II cells (AECII) damage by inhibiting mitochondrial injury in acute lung injury (ALI) induced by lipopolysaccharide (LPS), whereas the precise mechanism is still unclear. It is known that PTEN-induced putative kinase 1 (PINK1)/Parkin-mediated mitophagy can remove damaged mitochondria selectively, which may be involved in BCAP31 protection against mitochondrial injury. In the current study, ALI mice models were established by using surfactant protein C (Sftpc)-BCAP31 transgenic mice (BCAP31 mice) and AECII-specific BCAP31 knockout mice (BCAP31 mice) treated with LPS.

View Article and Find Full Text PDF

Dichromate ion (CrO) is a highly toxic chromium-containing compound that poses significant hazards to the digestive, respiratory systems, skin, and mucous membranes. Currently, the detection and adsorption of CrO face significant challenges, including the time-consuming and low sensitivity nature of traditional analytical methods. The limited efficiency and capacity of existing adsorbents hinder their practical application in real-time water quality monitoring and environmental remediation.

View Article and Find Full Text PDF
Article Synopsis
  • * Conducted on 122 patients with moderate to severe aortic stenosis, the research identified specific circulating proteins that correlate with higher risks of heart failure, severe symptoms, and mortality.
  • * Key proteins linked to inflammation and immune responses were significantly associated with worse outcomes, particularly in patients showing reduced heart strain, suggesting new avenues for assessing patient risk beyond standard imaging methods.
View Article and Find Full Text PDF

To explore the impacts of galactose side-chain on the prebiotic activity of xyloglucan oligosaccharides (XGOS), XGOS and de-galactosylated XGOS (DG-XGOS) were prepared from tamarind using an enzymatic method. The differences in structural features of XGOS and DG-XGOS were systematically analyzed. Their fermentation characteristics of human fecal microbiota were explored.

View Article and Find Full Text PDF

We rigorously assessed a comprehensive association testing framework for heteroplasmy, employing both simulated and real-world data. This framework employed a variant allele fraction (VAF) threshold and harnessed multiple gene-based tests for robust identification and association testing of heteroplasmy. Our simulation studies demonstrated that gene-based tests maintained an appropriate type I error rate at α = 0.

View Article and Find Full Text PDF

As the most important phenolic biopolymer in nature, lignin shows promising application potentialities in various bioactivities in vivo and in vitro, mainly including antioxidant, anti-inflammatory, hypolipidemic, and antidiabetic control. In this work, several carbon-based solid acids were synthesized to catalyze the fragmentation of organosolv lignin (OL). The generated lignin fragments, with controllable molecular weight and functional groups, were further evaluated for their application in the prevention and treatment of type 2 diabetes mellitus (T2DM).

View Article and Find Full Text PDF

This study reports a pH/magnetic dual-responsive hemicellulose-based nanocomposite hydrogel with nearly 100 % carbohydrate polymer-based and biodegradable polymer compositions for drug delivery. We synthesized pure FeO magnetic nanoparticles (FeO MNPs) using a co-precipitation method, then engineering xylan hemicellulose (XH), acrylic acid, poly(ethylene glycol) diacrylate, and FeO to synthesize the pH/magnetic dual-responsive hydrogel (FeO@XH-Gel), through graft polymerization on XH with in-situ doping FeO MNPs initiated by the ammonium persulfate/tetramethylethylenediamine redox system. Fourier transform infrared spectroscopy (FTIR), nuclear magnetic resonance (H NMR), X-ray diffractometry (XRD), scanning electron microscopy and energy dispersive spectrometer (SEM-EDS), high-resolution transmission electron microscopy (HRTEM), Brunauer-Emmett-Teller (BET), swelling gravimetric analysis, vibrating sample magnetometer (VSM) were employed to analyze the hydrogel's chemical structures, morphologies, pH-responsive behaviors, and magnetic responsiveness characteristics, mechanical and rheological properties, as well as cytotoxicity and biodegradability.

View Article and Find Full Text PDF

The arabinogalactan in the representative softwood biomass of larch was degraded using an environmentally friendly hydrogen peroxide and vitamin C (HO-V) system to improve its immunomodulatory activity. Through the HO-V degradation mechanism, hydroxyl radicals are generated, which then target the hydrogen atoms within polysaccharides, resulting in the breaking of glycosidic bonds. Given the impact of oxidative degradation on polysaccharides, we identified three specific arabinogalactan degradation products distinguished by their arabinosyl side chain compositions.

View Article and Find Full Text PDF

Background: Serious games (SGs) have emerged as engaging and instructional digital simulation tools that are increasingly being used for military medical training. SGs are often compared with traditional media in terms of learning outcomes, but it remains unclear which of the 2 options is more efficient and better accepted in the process of knowledge acquisition.

Objective: This study aimed to create and test a scenario-based system suitable for enhancing rescue reasoning skills in tactical combat casualty care.

View Article and Find Full Text PDF

Acute cutaneous lupus erythematosus (ACLE) is closely associated with systemic symptoms in systemic lupus erythematosus (SLE). This study aimed to identify potential biomarkers for ACLE and explore their association with SLE to enable early prediction of ACLE and identify potential treatment targets for the future. In total, 185 SLE-diagnosed patients were enrolled and categorized into two groups: those with ACLE and those without cutaneous involvement.

View Article and Find Full Text PDF

Background: Non-alcoholic steatohepatitis (NASH) and liver fibrosis are progressive conditions associated with non-alcoholic fatty liver disease (NAFLD), characterized by hepatocyte pyroptosis and hepatic stellate cell (HSC) activation. Gentiopicroside (GPS) has emerged as a potential treatment for NASH, yet its underlying mechanism remains unclear.

Aim: To confirm that GPS can improve NASH and liver fibrosis by blocking the NLRP3 signaling pathway STUDY DESIGN: Initially, different animal models were used to study the effects and mechanisms of GPS on NASH and fibrosis.

View Article and Find Full Text PDF

Fabrication of sustainable bio-based malleable thermosets (BMTs) with excellent mechanical properties and reprocessing ability for applications in electronic devices has attracted more and more attention but remains significant challenges. Herein, the BMTs with excellent mechanical robustness and reprocessing ability were fabricated via integrating with radical polymerization and Schiff-base chemistry, and employed as the flexible substrate to prepare the capacitive sensor. To prepare the BMTs, an elastic bio-copolymer derived from plant oil and 5-hydroxymethylfurfural was first synthesized, and then used to fabricate the dynamic crosslinked BMTs through Schiff-base chemistry with the amino-modified cellulose and polyether amine.

View Article and Find Full Text PDF

An eco-friendly adsorbent was prepared by reverse suspension crosslinking method to remove multiple pollutants from aqueous solution. Both raw materials, derived from humus (HS) and chitosan (CS), are biodegradable and low-cost natural biopolymers. After combining HS with CS, the adsorption capacity was significantly improved due to compensation effects between the two components.

View Article and Find Full Text PDF

In recent years, construction and demolition waste (CDW) landfills landslide accidents have occurred globally, with consequences varying due to surrounding environmental factors. Risk monitoring is crucial to mitigate these risks effectively. Existing studies mainly focus on improving risk assessment accuracy for individual landfills, lacking the ability to rapidly assess multiple landfills at a regional scale.

View Article and Find Full Text PDF

Background: Glossopharyngeal neuralgia (GPN) is a condition that causes simultaneous headache and facial pain. The treatment for GPN is similar to the treatment for trigeminal neuralgia. Craniotomy microvascular decompression (MVD) or radiofrequency (RF) therapy is needed if conservative treatment with oral drugs fails.

View Article and Find Full Text PDF

The development of flexible wearable multifunctional electronics has gained great attention in the field of human motion monitoring. However, developing mechanically tough, highly stretchable, and recyclable composite conductive materials for application in multifunctional sensors remained great challenges. In this work, a mechanically tough, highly stretchable, and recyclable composite conductive elastomer with the dynamic physical-chemical dual-crosslinking network was fabricated by the combination of multiple hydrogen bonds and dynamic ester bonds.

View Article and Find Full Text PDF

The growing generation of construction and demolition waste (CDW) has emerged as a prominent challenge on global environmental agendas. However, the effectiveness of CDW management (CDWM) strategies varies among cities. Existing literature predominantly evaluates the effectiveness of CDWM at the project level, offering a localized perspective that fails to capture a city's comprehensive CDWM profile.

View Article and Find Full Text PDF

Cellulose, hemicellulose, and lignin are the major bio-components in lignocellulosic biomass (BC-LB), which possess excellent biomechanical properties and biocompatibility to satisfy the demands of orthopedic applications. To understand the basis and trends in the development of major bio-components in BC-LB in orthopedics, the bibliometric technology was applied to get unique insights based on the published papers (741) in the Web of Science (WOS) database from January 1st, 2001, to February 14th, 2023. The analysis includes the annual distributions of publications, keywords co-linearity, research hotspots exploration, author collaboration networks, published journals, and clustering of co-cited literature.

View Article and Find Full Text PDF
Article Synopsis
  • MASLD (Metabolic dysfunction-associated steatotic liver disease) is on the rise due to obesity and lifestyle changes, prompting research into the therapeutic effects of ursolic acid, a natural compound.
  • The study utilized various methods, including drug target chips and molecular docking, to explore ursolic acid's effects on MASLD and validated findings using animal models and isolated CD4+ T cells.
  • Results showed that ursolic acid inhibits the inflammatory role of the protein SPP1 in Th17 cell differentiation, modulating immune responses through the ERK signaling pathway, highlighting its potential as a treatment for MASLD.
View Article and Find Full Text PDF

Different types of functional oligosaccharides exhibit varying degrees of immune-enhancing effects, which might be attributable to differences in their glycosyl structures. The differences in the immunomodulatory action of three functional oligosaccharides with distinct glycosyl compositions: cello-oligosaccharides (COS), manno-oligosaccharides (MOS), and xylo-oligosaccharides (XOS), were investigated in mouse-derived macrophage RAW264.7.

View Article and Find Full Text PDF

The miR390-derived TAS3 trans-acting short-interfering RNAs (tasiRNAs) module represents a conserved RNA silencing pathway in the plant kingdom; however, its characterization in the bryophyte Marchantia polymorpha is limited. This study elucidated that MpDCL4 processes MpTAS3 double-stranded RNA (dsRNA) to generate tasiRNAs, primarily from the 5'- and 3'-ends of dsRNA. Notably, we discovered a novel tasiRNA, tasi78A, which can negatively regulate a cytochrome P450 gene, MpCYP78A101.

View Article and Find Full Text PDF

Despite the tremendous efforts on developing antibacterial wearable textile materials containing TiCT MXene, the singular antimicrobial mechanism, poor antibacterial durability, and oxidation susceptibility of MXene limits their applications. In this context, flexible multifunctional cellulosic textiles were prepared via layer-by-layer assembly of MXene and the in-situ synthesis of zeolitic imidazolate framework-8 (ZIF-8). Specifically, the introduction of highly conductive MXene enhanced the interface interactions between the ZIF-8 layer and cellulose fibers, endowing the green-based materials with outstanding synergistic photothermal/photodynamic therapy (PTT/PDT) activity and adjustable electromagnetic interference (EMI) shielding performance.

View Article and Find Full Text PDF