Publications by authors named "Yong Luan"

Introduction: Effective postoperative pain management remains a significant challenge due to the severe side effects of opioids and the limitations of existing analgesic delivery systems. Inflammation plays a critical role in pain exacerbation, highlighting the need for therapies that combine analgesic effects with intrinsic anti-inflammatory properties.

Methods: Herein, we develop an intrinsic anti-inflammatory nanomedicine designed to enhance pain management by integrating controlled anesthetic release with inherent anti-inflammatory activity.

View Article and Find Full Text PDF

Coronary artery occlusion (CAO) is a rare but life-threatening complication of transcatheter aortic valve implantation (TAVI). The mechanism of CAO is the displacement of the native calcified valve leaflet over the coronary ostium. Here, we report on a woman who experienced sudden cardiac arrest and abrupt CAO during TAVI, which was caused by two different original obstructions, a rupture of aortic plaque or a partial tear of the aortic intima blocking the upper 2/3 of the left main trunk (LMT) ostium, and the transcatheter heart valve (THV) blocking the lower 1/3 of the LMT ostium.

View Article and Find Full Text PDF

Postoperative pain management would benefit significantly from an anesthetic that could take effect in an on-demand manner. An ultrasound would be an appropriate tool for such nanoplatform because it is widely used in clinical settings for ultrasound-guided anesthesia. Herein, we report a nanoplatform for postoperative on-demand pain management that can effectively enhance their analgesic time while providing ultrasonic imaging.

View Article and Find Full Text PDF

Background: The mortality of acute aortic dissection (AD) can reach 65~70%. However, it is challenging to follow the progress of AD formation. The purpose of this work was to observe the process of dissection development using a novel tear-embedded silicone phantom.

View Article and Find Full Text PDF

Background: The lack of a satisfactory strategy for postoperative pain management significantly impairs the quality of life for many patients. However, existing nanoplatforms cannot provide a longer duration of nerve blockage with intensity-adjustable characteristics under imaging guidance for clinical applications.

Results: To overcome this challenge, we proposed a biocompatible nanoplatform that enables high-definition ultrasound imaging-guided, intensity-adjustable, and long-lasting analgesia in a postoperative pain management model in awake mice.

View Article and Find Full Text PDF

It has been proven that the deformability of red blood cells (RBC) is reduced owing to changes in mechanical properties, such as diabetes mellitus and hypertension. To probe the effects of RBC morphological and physical parameters on the flow field in bifurcated arterioles, three types of RBC models with various degrees of biconcave shapes were built based on the in vitro experimental data. The dynamic behaviors of the RBCs in shear flow were simulated to validate the feasibility of the finite element-Arbitrary Lagrangian-Eulerian method with a moving mesh.

View Article and Find Full Text PDF

Introduction: The restricted duration is a fundamental drawback of traditional local anesthetics during postoperative pain from a single injection. Therefore, an injectable local anesthetic that produces repeatable on-demand nerve blocks would be ideal.

Methods: We offer ultrasound-triggered on-demand analgesia consisting of dendritic mesoporous silica nanoparticles (DMSN) carried with ultrasound-sensitive perfluoropentane (PFP) and levobupivacaine (DMSN-bupi-PFP) to achieve repeatable and customizable on-demand local anesthetics.

View Article and Find Full Text PDF

Patients with heart failure (HF) or undergoing cardiogenic shock and percutaneous coronary intervention require short-term cardiac support. Short-term cardiac support using a left ventricular assist device (LVAD) alters the pressure and flows of the vasculature by enhancing perfusion and improving the hemodynamic performance for the HF patients. However, due to the position of the inflow and outflow of the LVAD, the local hemodynamics within the aorta is altered with the LVAD support.

View Article and Find Full Text PDF

The subpulmonary ventricular exclusion (Fontan) could effectively improve the living quality for the children patients with a functional single ventricle in clinical. However, postoperative Fontan circulation failure can easily occur, causing obvious limitations while clinically implementing Fontan. The cavopulmonary assist devices (CPAD) is currently an effective means to solve such limitations.

View Article and Find Full Text PDF

Purpose: In vitro patient-specific flexible vascular models are helpful for understanding the haemodynamic changes before and after endovascular treatment and for effective training of neuroendovascular interventionalists. However, it is difficult to fabricate models of overall unified or controllable thickness using existing manufacturing methods. In this study, we developed an improved and easily implemented method by combining 3D printing and brush-spin-coating processes to produce a transparent silicone model of uniform or varied thickness.

View Article and Find Full Text PDF

Although the incidence of many cardiovascular diseases has declined as medical treatments have improved, the prevalence of aortic dissection (AD) has increased. Compared to type B dissections, type A dissections are more severe, and most patients with type A dissections require surgical treatment. The objective of this study was to investigate the relationships between the wall shear stress (WSS) on the aortic endothelium and the frequent tearing positions using computational fluid dynamics.

View Article and Find Full Text PDF

Background: In vivo studies have demonstrated that reasonable exercise training can improve endothelial function. To confirm the key role of wall shear stress induced by exercise on endothelial cells, and to understand how wall shear stress affects the structure and the function of endothelial cells, it is crucial to design and fabricate an in vitro multi-component parallel-plate flow chamber system which can closely replicate exercise-induced wall shear stress waveforms in artery.

Methods: The in vivo wall shear stress waveforms from the common carotid artery of a healthy volunteer in resting and immediately after 30 min acute aerobic cycling exercise were first calculated by measuring the inner diameter and the center-line blood flow velocity with a color Doppler ultrasound.

View Article and Find Full Text PDF

The intracellular calcium dynamics in vascular endothelial cells (VECs) in response to wall shear stress (WSS) and/or adenosine triphosphate (ATP) have been commonly regarded as an important factor in regulating VEC function and behavior including proliferation, migration and apoptosis. However, the effects of time-varying ATP signals have been usually neglected in the past investigations in the field of VEC mechanobiology. In order to investigate the combined effects of WSS and dynamic ATP signals on the intracellular calcium dynamic in VECs, a Y-shaped microfluidic device, which can provide the cultured cells on the bottom of its mixing micro-channel with stimuli of WSS signal alone and different combinations of WSS and ATP signals in one single micro-channel, is proposed.

View Article and Find Full Text PDF

Bronchial hyperresponsiveness (BHR) is the most common clinical manifestation identified in asthmatic patients, and intubation is the major factor that stimulates the airway of patients receiving general anesthetic. In the present study, nitric oxide synthase 1 (NOS1) was identified as a target gene of micro (mi)R‑146a using in silico analysis and luciferase assay. Furthermore, the regulatory role of miR‑146a was demonstrated by the observation that the NOS1 expression level in pulmonary artery smooth muscle cells (PASMCs) transfected with miR‑146a mimics was significantly downregulated and the NOS1 expression level in PASMCs transfected with miR‑146a inhibitors was significantly upregulated.

View Article and Find Full Text PDF

Background: Hepatocellular carcinoma (HCC) is regarded as one of the most common malignancies and among the leading causes of cancer death among the whole world. The most urgent needs are to find sensitive markers for early diagnosis or monitor postoperative recurrence and to give adequate treatment for HCC. MicroRNAs (miRNAs) are reported as a group of small non-coding RNAs that can function as endogenous RNA interference to regulate expression of the targeted genes.

View Article and Find Full Text PDF

Objectives: Gastric cancer is one of the most frequently causing cancer-related deaths worldwide. The X-ray repair complementing group 1 gene (XRCC1) is an important candidate gene for influencing gastric cancer risk. This study aimed to evaluate the associations between XRCC1 genetic variants and gastric cancer susceptibility in Chinese Han population.

View Article and Find Full Text PDF

Background And Objective: Cardiopulmonary bypass (CPB) in the treatment of locally advanced pulmonary malignant tumors invaded heart or great vessels was not well underwent. The aim of this study is to report the results of these cases with locally advanced pulmonary malignant tumor which were completely resected under CPB in our hospital.

Methods: Four patients with locally advanced pulmonary malignant tumors were operated under CPB.

View Article and Find Full Text PDF