Publications by authors named "Yong Kyu Yoon"

Wireless power transfer (WPT) within the human body can enable long-lasting medical devices but poses notable challenges, including absorption by biological tissues and weak coupling between the transmitter (Tx) and receiver (Rx). In pursuit of more robust and efficient wireless power, various innovative strategies have emerged to optimize power transfer efficiency (PTE). One such groundbreaking approach stems from the incorporation of metamaterials, which have shown the potential to enhance the capabilities of conventional WPT systems.

View Article and Find Full Text PDF

This work presents a high-efficiency reconfigurable wireless-power-transfer (WPT) system using fully rollable Tx/Rx coils and a metasurface (MS) screen working at 6.78 MHz, for the first time. The MS screens are placed between the Tx and Rx to magnify the power-transfer efficiency (PTE) of the WPT system.

View Article and Find Full Text PDF

This research is conducted in order to investigate the structural and electrical characteristics of carbon nanowalls (CNWs) according to the sputtering time of interlayers. The thin films were deposited through RF magnetron sputtering with a 4-inch target (Ni and Ti) on the glass substrates, and the growth times of the deposition were 5, 10, and 30 min. Then, a microwave plasma-enhanced chemical vapor deposition (PECVD) system was used to grow CNWs on the interlayer-coated glass substrates by using a mixture of H and CH gases.

View Article and Find Full Text PDF

In this study, a four-inch zinc oxide (ZnO) nanostructure was synthesized using radio frequency (RF) magnetron sputtering to maximize the electrochemical performance of the anode material of a lithium-ion battery. All materials were grown on cleaned p-type silicon (100) wafers with a deposited copper layer inserted at the stage. The chamber of the RF magnetron sputtering system was injected with argon and oxygen gas for the growth of the ZnO films.

View Article and Find Full Text PDF

This paper presents a metamaterial (MTM)-integrated high-gain rectenna for RF sensing and energy harvesting applications that operates at 2.45 GHz, an industry, science, medicine (ISM) band. The novel MTM superstrate approach with a three-layered integration method is firstly introduced for rectenna applications.

View Article and Find Full Text PDF

Purpose: We designed electrospun polycaprolactone mats consisting of nanofibers and microbeads for extended delivery of dexamethasone.

Methods: Thin flexible dexamethasone loaded polycaprolactone mats were prepared by electrospinning. The solvents, polymer loading, voltage and tip-to-collector distance were varied to explore the effects on microstructure of the mats.

View Article and Find Full Text PDF

Carbon nanomaterials have become increasingly popular microelectrode materials for neuroscience applications. Here we study how the scale of carbon nanotubes and carbon nanofibers affect neural viability, outgrowth, and adhesion. Carbon nanotubes were deposited on glass coverslips via a layer-by-layer method with polyethylenimine (PEI).

View Article and Find Full Text PDF

This article presents a new method for fabricating highly conductive gold nanostructures within a polymeric matrix with subwavelength resolution. The nanostructures are directly written in a gold precursor-doped photoresist using a femtosecond pulsed laser. The laser energy is absorbed by a two-photon dye, which induces simultaneous reduction of gold in the precursor and polymerization of the negative photoresist.

View Article and Find Full Text PDF

A polymeric composite material composed of colloidal gold nanoparticles (<10 nm) and SU8 has been utilized for the fabrication of large-area, high-definition photonic crystal. We have successfully fabricated near-infrared photonic crystal slabs from composite materials using a combination of multiple beam interference lithography and reactive ion etching processes. Doping of colloidal gold nanoparticles into the SU8 photopolymer results in a better definition of structural features and hence in the enhancement of the optical properties of the fabricated photonic crystals.

View Article and Find Full Text PDF

We have designed and fabricated a microneedle array with electrical functionality with the final goal of electroporating skin's epidermal cells to increase their transfection by DNA vaccines. The microneedle array was made of polymethylmethacrylate (PMMA) by micromolding technology from a polydimethylsiloxane (PDMS) mold, followed by metal deposition, patterning using laser ablation, and electrodeposition. This microneedle array possessed sufficient mechanical strength to penetrate human skin in vivo and was also able to electroporate both red blood cells and human prostate cancer cells as an in vitro model to demonstrate cell membrane permeabilization.

View Article and Find Full Text PDF

We report on the fabrication of two-dimensional polymeric photonic crystal membranes on the surface of silicon using visible-light multibeam interference lithography. The structures are created by the interference of three beams of a green laser. A polymer buffer layer doped with a Rhodamine B laser dye, interlaid between the lithography layer and the silicon substrate, suppresses the effects of strong reflection and nonradiative absorption of silicon on the interference pattern.

View Article and Find Full Text PDF

Administration of protein and DNA biotherapeutics is limited by the need for hypodermic injection. Use of micron-scale needles to deliver drugs in a minimally invasive manner provides an attractive alternative, but application of this approach is limited by the need for suitable microneedle designs and fabrication methods. To address this need, this paper presents a conical polymer microneedle design that is fabricated using a novel integrated lens technique and analyzed for its ability to insert into the skin without mechanical failure.

View Article and Find Full Text PDF

Conventional micromolding provides rapid and low-cost methods to fabricate polymer microstructures, but has limitations when producing sophisticated designs. To provide more versatile micromolding techniques, we developed methods based on filling micromolds with polymer microparticles, as opposed to polymer melts, to produce microstructures composed of multiple materials, having complex geometries, and made using mild processing conditions. Polymer microparticles of 1 to 30 microm in size were made from PLA, PGA and PLGA using established spray drying and emulsion techniques either with or without encapsulating model drug compounds.

View Article and Find Full Text PDF

Objective: To evaluate the dynamic sonographic findings of external snapping hip syndrome.

Methods: Five patients with 7 cases of painful external snapping hip (3 male and 2 female; age range, 14-32 years; mean, 19 years) were examined with sonography. Two patients had bilateral snapping.

View Article and Find Full Text PDF

99mTc-ECD SPECT is valuable for the evaluation of cell viability and function. The purpose of the present study was to evaluate the significance of 99mTc-ECD brain SPECT in ischemic stroke. We compared 99mTc-ECD brain SPECT with perfusion and diffusion weighted images (PWI, DWI).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: