CXCL12 and its receptors, which are highly expressed in the skin, are associated with various cutaneous diseases, including androgenic alopecia. However, their expression and role during the hair cycle are unknown. This study aims to investigate the expression of CXCL12 and its receptor, CXCR4, in the vicinity of hair follicles and their effect on hair growth.
View Article and Find Full Text PDFEarly blastomeres of mouse preimplantation embryos exhibit bi-potential cell fate, capable of generating both embryonic and extra-embryonic lineages in blastocysts. Here we identify three major two-cell-stage (2C)-specific endogenous retroviruses (ERVs) as the molecular hallmark of this bi-potential plasticity. Using the long terminal repeats (LTRs) of all three 2C-specific ERVs, we identify Krüppel-like factor 5 (Klf5) as their major upstream regulator.
View Article and Find Full Text PDFMicrobiol Resour Announc
September 2020
strain A2, isolated from crude oil-contaminated soils, synthesizes yellow keto-γ-carotene from various -alkanes as the sole carbon source. Its complete genome sequence consists of a single circular chromosome (5,090,254 bp, 67.3% G+C content).
View Article and Find Full Text PDFEmbryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) efficiently generate all embryonic cell lineages but rarely generate extraembryonic cell types. We found that microRNA deficiency expands the developmental potential of mouse pluripotent stem cells, yielding both embryonic and extraembryonic lineages and strongly inducing MuERV-L (MERVL) endogenous retroviruses, similar to what is seen with features of totipotent two-cell blastomeres. restricts the acquisition of expanded cell fate potential in pluripotent stem cells, and it represses MERVL expression through transcriptional regulation, at least in part by targeting the transcription factor Gata2.
View Article and Find Full Text PDFWe investigate the intrinsic electrical characteristics and source/drain parasitic resistance in p-type SnO TFTs fabricated using Ni electrodes based on the gated-four-probe method. Because of the relatively high work function and inexpensive price, Ni has been most frequently used as the source/drain electrode materials in p-type SnO TFTs. However, our experimental data shows that the width normalized parasitic resistances of SnO TFT with Ni electrodes are around one to three orders of magnitude higher than those in the representative n-type oxide TFT, amorphous indium- gallium-zinc oxide TFT, and are comparable with those in amorphous silicon TFTs with Mo electrodes.
View Article and Find Full Text PDFHierarchical AuZn dendrites revealed electrocatalytic properties towards the glucose oxidation and the four-electron O2 reduction. The micro fuel cell using AuZn electrodes generated a power density of 2.07 and 0.
View Article and Find Full Text PDFThe purpose of this study was to investigate the effects of diabetes on mesenchymal stem cells (MSCs) in terms of their angiogenic and therapeutic potential for repairing tissue ischemia. We culture-isolated MSCs from streptozotocin-induced diabetic rats (D-MSCs) and compared their proliferation, differentiation, and angiogenic effects with those from normal rats (N-MSCs). The angiogenic effects of MSCs were evaluated by real-time PCR, in vitro tube formation assay, and transplantation of the MSCs into a hindlimb ischemia model followed by laser Doppler perfusion imaging.
View Article and Find Full Text PDFThe p53 pathway plays an essential role in tumor suppression, regulating multiple cellular processes coordinately to maintain genome integrity in both somatic cells and stem cells. Despite decades of research dedicated to p53 function in differentiated somatic cells, we are just starting to understand the complexity of the p53 pathway in the biology of pluripotent stem cells and tissue stem cells. Recent studies have demonstrated that p53 suppresses proliferation, promotes differentiation of embryonic stem (ES) cells and constitutes an important barrier to somatic reprogramming.
View Article and Find Full Text PDFSomatic reprogramming induced by defined transcription factors is a low-efficiency process that is enhanced by p53 deficiency. So far, p21 is the only p53 target shown to contribute to p53 repression of iPSC (induced pluripotent stem cell) generation, indicating that additional p53 targets may regulate this process. Here, we demonstrate that miR-34 microRNAs (miRNAs), particularly miR-34a, exhibit p53-dependent induction during reprogramming.
View Article and Find Full Text PDFRationale: Bone marrow (BM) cells play an important role in physiological and therapeutic neovascularization. However, it remains unclear whether any specific uncultured BM cell populations have higher angiogenic and vasculogenic activities. Moreover, there has been controversy regarding the vasculogenic ability of BM cells.
View Article and Find Full Text PDFBone marrow-derived mononuclear cells (BMNCs) have been shown to effectively treat ischemic cardiovascular diseases. Because diabetic neuropathy (DN) is causally associated with impaired angiogenesis and deficiency of angiogenic and neurotrophic factors in the nerves, we investigated whether DN can be ameliorated by local injection of BMNCs. Severe peripheral neuropathy, characterized by a significant decrease in the motor and sensory nerve conduction velocities (NCVs), developed 12 weeks after the induction of diabetes with streptozotocin in rats.
View Article and Find Full Text PDFBackground: Endothelial progenitor cells (EPCs) are known to promote neovascularization in ischemic diseases. Recent evidence suggested that diabetic neuropathy is causally related to impaired angiogenesis and deficient growth factors. Accordingly, we investigated whether diabetic neuropathy could be reversed by local transplantation of EPCs.
View Article and Find Full Text PDFAxon formation is fundamental for brain development and function. TSC1 and TSC2 are two genes, mutations in which cause tuberous sclerosis complex (TSC), a disease characterized by tumor predisposition and neurological abnormalities including epilepsy, mental retardation, and autism. Here we show that Tsc1 and Tsc2 have critical functions in mammalian axon formation and growth.
View Article and Find Full Text PDFNoncellular differentiation effects have emerged as important mechanisms mediating therapeutic effects of stem or progenitor cell transplantation. Here, we investigated the expression patterns and sources of humoral factors and their regional and systemic biological effects after bone marrow (BM)-derived endothelial progenitor cell (EPC) transplantation into ischemic myocardium. Although most of the transplanted EPCs disappeared within a week, up-regulation of multiple humoral factors was sustained for longer than two weeks, which correlated well with the recovery of cardiac function.
View Article and Find Full Text PDFCalcium (Ca2+) pathways are important in cell volume regulation in many cells, but its role in volume regulatory processes in cholangiocytes is unclear. Thus, we have investigated the role of Ca2+ in regulatory volume decrease (RVD) in cholangiocytes using freshly isolated bile duct cell clusters (BDCCs) from normal mouse. No significant increase in [Ca2+]i was observed during RVD, while ionomycin and ATP showed significant increases.
View Article and Find Full Text PDFBiochem Biophys Res Commun
December 2006
XaiF, a novel 32kDa protein encoded by the ORF located in the immediate downstream of the xynA gene of Bacillus stearothermophilus No. 236, was identified to be the xylanase-specific trans-activator. In this study, the positive effect of XaiF was confirmed to be xylanase-specific, and the results from Northern blot and in vitro transcription assays showed that the XaiF increased the xynA transcripts at post-transcriptional step.
View Article and Find Full Text PDFImprovement of thermal stability of the Bacillus stearthermophilus No. 236 endo-beta-1,4-xylanase (XynA) was tried by engineering a de novo designed disulfide bridge. Disulfide design was performed firstly using the disulfide bond design program (Disulfide by Designtrade mark) to identify residue pairs having the favorable geometric characteristics for disulfide formation.
View Article and Find Full Text PDFThe Bacillus stearothermophilus no. 236 gene encoding the bifunctional enzyme HprK/P, the key regulator of carbon catabolite repression/activation (CCR/CCA) in most Gram-positive bacteria, was cloned and the (His)(6)-tagged gene product was characterized in detail. The nucleotide sequence of the hprK/P gene corresponded to an open reading frame of 951 bp that encoded a polypeptide of 316 amino acid residues with a calculated molecular mass of 35,458 Da.
View Article and Find Full Text PDFA glass bead biofilm reactor was operated using H2 as an electron donor to remove nitrate at 150 mg NO3-N l(-1) to below detection level. The microbial community in the glass beads biofilm reactor was investigated by using denaturing gradient gel electrophoresis (DGGE) and phylogenetic analysis. In DGGE analysis of the biofilm, five bands were dominant and indicated the presence of eight beta-proteobacteria, one gamma-proteobacteria and twelve clostridia.
View Article and Find Full Text PDFThe gene encoding the catabolite control protein A (CcpA) of Bacillus stearothermophilus No. 236, a strong xylanolytic bacterium, was cloned, sequenced, and expressed in Escherichia coli. The nucleotide sequence of the ccpA gene corresponded to an open reading frame of 1,005 bp that encodes a polypeptide of 334 amino acid residues with a calculated molecular mass of 36,902 kDa.
View Article and Find Full Text PDFA novel inulin-binding module (IBM), which was identified from the N-terminal region of the cycloinulinooligosaccharide fructanotransferase (CFTase) in Bacillus macerans CFC1, was characterized using the discrete entity of IBM produced by the recombinant Escherichia coli strains. Deletion analyses located the inulin binding activity in the N-terminal region between 241 and 389 amino acid residues, which was removed from the mature enzyme by processing when secreted from the B. macerans CFC1 cells.
View Article and Find Full Text PDFAn approach to enhancing the water-splitting performance of bipolar membranes (BPMs) is introducing an inorganic substance at the bipolar (BP) junction. In this study, the immobilization of inorganic matters (i.e.
View Article and Find Full Text PDFThe effects of inorganic substances on water splitting in ion-exchange membranes (IEMs) were investigated. In this study, iron hydroxide/ oxide and silica sol were immobilized on the surface of the IEMs. The water-splitting capabilities of the metal-embedded cation-exchange membranes were 10(4)-10(5) times greater than those of the virgin membranes at the same current density.
View Article and Find Full Text PDF