Publications by authors named "Yong Jin Bae"

A Thermal Mechanism of Ion Formation in MALDI.

Annu Rev Anal Chem (Palo Alto Calif)

August 2016

An important recent discovery concerning the fundamentals of matrix-assisted laser desorption/ionization (MALDI) is that the abundance of each ion appearing in a spectrum is fixed, regardless of the experimental condition, when an effective temperature associated with the spectrum is fixed. We describe this phenomenon and the thermal picture for the ion formation in MALDI derived from it. Accepting that matrix-to-analyte proton transfer is in quasi-equilibrium as supported by experimental data, the above thermal determination occurs because the primary (matrix) ion formation processes are thermally governed.

View Article and Find Full Text PDF

Insights on mechanisms for the generation of gas-phase peptide ions and their dissociation in matrix-assisted laser desorption ionization (MALDI) gained from the kinetic and ion yield studies are presented. Even though the time-resolved photodissociation technique was initially used to determine the dissociation kinetics of peptide ions and their effective temperature, it was replaced by a simpler method utilizing dissociation yields from in-source decay (ISD) and post-source decay (PSD). The ion yields for a matrix and a peptide were measured by repeatedly irradiating a region on a sample and collecting ion signals until the sample in the region was completely depleted.

View Article and Find Full Text PDF

Previously, we reported that MALDI spectra of peptides became reproducible when temperature was kept constant. Linear calibration curves derived from such spectral data could be used for quantification. Homogeneity of samples was one of the requirements.

View Article and Find Full Text PDF

Rationale: Previously, we reported a method (Anal. Chem. 2012, 84, 10332) for peptide quantification based on matrix-assisted laser desorption/ionization (MALDI) time-of-flight (TOF) mass spectrometry (MS).

View Article and Find Full Text PDF

In a previous study (J. Mass Spectrom. 48, 299-305, 2013), we observed that the abundance of each ion in a matrix-assisted laser desorption ionization (MALDI) spectrum looked thermally determined.

View Article and Find Full Text PDF

We propose to divide matrix suppression in matrix-assisted laser desorption ionization into two parts, normal and anomalous. In quantification of peptides, the normal effect can be accounted for by constructing the calibration curve in the form of peptide-to-matrix ion abundance ratio versus concentration. The anomalous effect forbids reliable quantification and is noticeable when matrix suppression is larger than 70%.

View Article and Find Full Text PDF

In our previous matrix-assisted laser desorption ionization (MALDI) studies of peptides, we found that their mass spectra were virtually determined by the effective temperature in the early matrix plume, Tearly, when samples were rather homogeneous. This empirical rule allowed acquisition of quantitatively reproducible spectra. A difficulty in utilizing this rule was the complicated spectral treatment needed to get Tearly.

View Article and Find Full Text PDF

In a previous study on matrix-assisted laser desorption ionization (MALDI) of peptides using α-cyano-4-hydroxycinnamic acid (CHCA) as a matrix, we found that the patterns of single-shot spectra obtained under different experimental conditions became similar upon temperature selection. In this paper, we report that absolute ion abundances are also similar in temperature-selected MALDI spectra, even when laser fluence is varied. The result that has been obtained using CHCA and 2,5-dihydroxybenzoic acid as matrices is in disagreement with the hypothesis of laser-induced ionization of matrix as the mechanism for primary ion formation in MALDI.

View Article and Find Full Text PDF

Even though matrix-assisted laser desorption ionization (MALDI) is a powerful technique for mass spectrometry of peptides and proteins, it is not quite useful for their quantification that is one of the outstanding problems in quantitative proteomics. The main difficulty lies in the poor reproducibility of MALDI spectra. In this work, a simple method to circumvent this problem has been developed.

View Article and Find Full Text PDF

Matrix-assisted laser desorption ionization of peptides was investigated using α-cyano-4-hydroxycinnamic acid as the matrix. In each experiment, a set of mass spectra was collected by repetitive irradiation of a spot on a sample. Even though shot-to-shot variation in spectral pattern was significant, it was reproducible for different spots and samples.

View Article and Find Full Text PDF

Degree of ionization (DI) in matrix-assisted laser desorption ionization (MALDI) was measured for five peptides using α-cyano-4-hydroxycinnanmic acid (CHCA) as the matrix. DIs were low 10(-4) for peptides and 10(-7) for CHCA. Total number of ions (i.

View Article and Find Full Text PDF

The energy levels of CH(3)Cl(+)X̃(2)E showing strong spin-vibronic coupling effect (Jahn-Teller effect) have been measured up to 3500 cm(-1) above the ground vibrational state using one-photon zero-kinetic energy photoelectron and mass-analyzed threshold ionization spectroscopic method. Theoretical calculations have been also performed to calculate the spin-vibronic energy levels using a diabatic model and ab initio adiabatic potential energy surfaces (PESs). In the theoretical calculations the diabatic potential energy surfaces are expanded by the Taylor expansions up to the fourth-order including the multimode vibronic interactions.

View Article and Find Full Text PDF

Preformed ion emission is the main assumption in one of the prevailing theories for peptide and protein ion formation in matrix-assisted laser desorption ionization (MALDI). Since salts are in preformed ion forms in the matrix-analyte mixture, they are ideal systems to study the characteristics of preformed ion emission. In this work, a reliable method to measure the ion yield (IY) in MALDI was developed and used for a solid salt benzyltriphenylphosphonium chloride and two room-temperature ionic liquids 1-butyl-3-methylimidazolium hexafluorophosphate and trihexyltetradecylphosphonium bis(2,4,4-trimethylpentyl)phosphinate.

View Article and Find Full Text PDF

Time-of-flight (TOF) mass spectra for a peptide (Y(6)) were obtained by utilizing matrix-assisted infrared laser desorption ionization (IR-MALDI) with glycerol as the matrix and by ultraviolet MALDI with α-cyano-4-hydroxycinnamic acid (CHCA), sinapinic acid (SA), and 2,5-dihydroxybenzoic acid (DHB). Collisional activation during ion extraction and exothermicity in the gas-phase proton transfer were found to be unimportant as the driving forces for in-source (ISD) and post-source (PSD) decays, indicating that the thermal energy acquired during photo-ablation is responsible for their occurrence. The temperatures of [Y(6) + H](+) in the 'early' and 'late' matrix plumes were estimated by the kinetic analysis of the ISD and PSD yields, respectively.

View Article and Find Full Text PDF

The yields of post-source decay (PSD) and time-resolved photodissociation (PD) at 193 and 266 nm were measured for singly protonated leucine enkephalin ([YGGFL + H](+)), a benchmark in the study of peptide ion dissociation, by using tandem time-of-flight mass spectrometry. The peptide ion was generated by matrix-assisted laser desorption ionization (MALDI) using 2,5-dihydroxybenzoic acid as the matrix. The critical energy (E(0)) and entropy (DeltaS(++) at 1000 K) for the dissociation were determined by Rice-Ramsperger-Kassel-Marcus fit of the experimental data.

View Article and Find Full Text PDF

A method is devised better to resolve the subbands of the ground vibronic band in the mass-analyzed threshold ionization (MATI) spectrum of CD(3)I. By selective photodissociation of CD(3)I(+) in these subbands, high-resolution spectra for the A(2)A(1)<--X(2)E(3/2) transition are recorded. Spectral analysis confirms our previous suggestion that these subbands are due to cations in different rotational K states; this demonstrates the capability of MATI to generate rovibronically selected ion beams.

View Article and Find Full Text PDF

The A(2)A(1)<--X(2)E(3/2) transition of CH(3)I(+) was investigated by photodissociation (PD) of the cation generated by one-photon mass-analyzed threshold ionization (MATI). Compared to the PD spectrum obtained by excitation of the cation in the main 0-0 band in the MATI spectrum, those obtained by excitation of the cations in the satellite structures showed substantially simplified rotational structures for nondegenerate vibronic bands. Spectral simplification occurred because each satellite consisted mostly of cations with one K quantum number.

View Article and Find Full Text PDF

One-photon mass-analyzed threshold ionization (MATI) spectra for the X (2)E(3/2) states of CH(3)I(+) and CD(3)I(+) were measured using vacuum ultraviolet radiation generated by four-wave mixing in Kr. Spin-orbit density functional theory calculations at the B3LYP/aug-cc-pVTZ level and spin-orbit/Jahn-Teller calculations were made to aid vibrational assignment. Each vibrational band consisted of several peaks due to different DeltaK transitions, which could be assigned by using molecular parameters determined in the previous high resolution photodissociation spectroscopic study.

View Article and Find Full Text PDF

One-photon mass-analyzed threshold ionization (MATI) spectrum of trans-C(2)H(2)Cl(2) was obtained by using vacuum ultraviolet radiation generated by four-wave mixing in Kr. The ionization energy determined from the position of the 0-0 band in the spectrum was 9.6306 +/- 0.

View Article and Find Full Text PDF

A high-quality mass-analyzed threshold ionization (MATI) spectrum of 2-chloropropene, 2-C3H5Cl, is reported. Its ionization energy determined for the first time from the 0-0 band position was 9.5395+/-0.

View Article and Find Full Text PDF