Publications by authors named "Yong Hoon Jang"

To retarget oncolytic herpes simplex virus (oHSV) to cancer-specific antigens, we designed a novel, double-retargeted oHSV platform that uses single-chain antibodies (scFvs) incorporated into both glycoprotein H and a bispecific adapter expressed from the viral genome to mediate infection predominantly via tumor-associated antigens. Successful retargeting was achieved using a nectin-1-detargeted HSV that remains capable of interacting with herpesvirus entry mediator (HVEM), the second canonical HSV entry receptor, and is, therefore, recognized by the adapter consisting of the virus-binding N-terminal 82 residues of HVEM fused to the target-specific scFv. We tested both an epithelial cell adhesion molecule (EpCAM)- and a human epidermal growth factor receptor 2-specific scFv separately and together to target cells expressing one, the other, or both receptors.

View Article and Find Full Text PDF

Connectomics research has made it more feasible to explore how neural circuits can generate multiple outputs. Female sexual drive provides a good model for understanding reversible, long-term functional changes in motivational circuits. After emerging, female flies avoid male courtship, but they become sexually receptive over 2 d.

View Article and Find Full Text PDF

In this study, we conducted molecular dynamics simulations to investigate the mechanical mixing and deformation behavior of hcp Ti/fcc Al bimetal formed by ultrasonic welding (UW). To analyze the effect of the interface shape, we considered sixteen sinusoidal interfaces of various heights and spatial periods along with the flat interface. Mechanical mixing between Ti and Al occurs mainly in the vibrational loading direction, while it is suppressed in the interface-normal direction, as the loading direction lies within the slip planes of both the hcp and fcc structures.

View Article and Find Full Text PDF

Ceramics are non-metallic inorganic materials fabricated from natural or high-purity raw materials through heating and cooling processes. Urethane is a three-dimensional plastic with both elasticity and chemical resistance; moreover, it is used as a rubber substitute. The use of both materials in various applications is gradually increasing.

View Article and Find Full Text PDF

The link between the biological clock and reproduction is evident in most metazoans. The fruit fly , a key model organism in the field of chronobiology because of its well-defined networks of molecular clock genes and pacemaker neurons in the brain, shows a pronounced diurnal rhythmicity in oogenesis. Still, it is unclear how the circadian clock generates this reproductive rhythm.

View Article and Find Full Text PDF

In-stent restenosis (ISR) often occurs after applying drug eluting stents to the blood vessels suffering from atherosclerosis or thrombosis. For treatment of ISR, drug eluting balloons (DEB) have been developed to deliver anti-proliferative drugs to the lesions with ISR. However, there are still limitations of DEB such as low drug delivery efficiency and drug loss to blood flow.

View Article and Find Full Text PDF

Upon mating, fruit fly females become refractory to further mating for several days. An ejaculate protein called sex peptide (SP) acts on uterine neurons to trigger this behavioural change, but it is still unclear how the SP signal modifies the mating decision. Here we describe two groups of female-specific local interneurons that are important for this process-the ventral abdominal lateral (vAL) and ventral abdominal medial (vAM) interneurons.

View Article and Find Full Text PDF

Although several neural pathways have been implicated in feeding behaviors in mammals [1-7], it remains unclear how the brain coordinates feeding motivations to maintain a constant body weight (BW). Here, we identified a neuropeptide pathway important for the satiety and BW control in Drosophila. Silencing of myoinhibitory peptide (MIP) neurons significantly increased BW through augmented food intake and fat storage.

View Article and Find Full Text PDF

A flexible and sensitive textile-based pressure sensor is developed using highly conductive fibers coated with dielectric rubber materials. The pressure sensor exhibits superior sensitivity, very fast response time, and high stability, compared with previous textile-based pressure sensors. By using a weaving method, the pressure sensor can be applied to make smart gloves and clothes that can control machines wirelessly as human-machine interfaces.

View Article and Find Full Text PDF