Publications by authors named "Yong Hak Seo"

Background: Enhanced lipogenesis plays a critical role in cell senescence via induction of expression of the mature form of sterol regulatory element binding protein 1 (SREBP1), which contributes to an increase in organellar mass, one of the indicators of senescence. We investigated the molecular mechanisms by which signaling molecules control SREBP1-mediated lipogenesis and senescence.

Methods: We developed cellular models for stress-induced senescence, by exposing Chang cells, which are immortalized human liver cells, to subcytotoxic concentrations (200 µM) of deferoxamine (DFO) and H2O2.

View Article and Find Full Text PDF

Although senescence has long been implicated in aging-associated pathologies, it is not clearly understood how senescent cells are linked to these diseases. To address this knowledge gap, we profiled cellular senescence phenotypes and mRNA expression patterns during replicative senescence in human diploid fibroblasts. We identified a sequential order of gain-of-senescence phenotypes: low levels of reactive oxygen species, cell mass/size increases with delayed cell growth, high levels of reactive oxygen species with increases in senescence-associated β-galactosidase activity (SA-β-gal), and high levels of SA-β-gal activity.

View Article and Find Full Text PDF

Transforming growth factor β1 (TGF β1) induces Mv1Lu cell senescence by persistently producing mitochondrial reactive oxygen species (ROS) through decreased complex IV activity. Here, we investigated the molecular mechanism underlying the effect of TGF β1 on mitochondrial complex IV activity. TGF β1 progressively phosphorylated the negative regulatory sites of both glycogen synthase kinase 3 (GSK3) α and β, corresponding well to the intracellular ROS generation profile.

View Article and Find Full Text PDF

Diverse metabolic alterations, including mitochondrial dysfunction, have often been reported as characteristic phenotypes of senescent cells. However, the overall consequence of senescent metabolic features, how they develop, and how they are linked to other senescent phenotypes, such as enlarged cell volume, increased granularity, and oxidative stress, is not clear. We investigated the potential roles of glycogen synthase kinase 3 (GSK3), a multifunctional kinase, in the development of the metabolic phenotypes in cell senescence.

View Article and Find Full Text PDF

Increased cell mass is one of the characteristics of senescent cells, but this event has not been clearly defined. When subcellular organellar mass was estimated with organelle-specific fluorescence dyes, we observed that most membranous organelles progressively increase in mass during cell senescence. This increase was accompanied by an increase in membrane lipids and augmented expression of lipogenic enzymes, such as fatty acid synthase (FAS), ATP citrate lyase, and acetyl-CoA carboxylase.

View Article and Find Full Text PDF

Glycogen biogenesis and its response to physiological stimuli have often been implicated in age-related diseases. However, their direct relationships to cell senescence and aging have not been clearly elucidated. Here, we report the central involvement of enhanced glycogenesis in cellular senescence.

View Article and Find Full Text PDF

Mitochondrial complex II defect has recently been implicated in cellular senescence and in the ageing process of which a critical phenotype is retardation and arrest of cellular growth. However, the underlying mechanisms of how complex II defect affects cellular growth, remain unclear. In this study, we investigated the effect of complex II inhibition using a subcytotoxic dose (400 microM) of 2-thenoyltrifluoroacetone (TTFA), a conventional complex II inhibitor, on cell cycle progression.

View Article and Find Full Text PDF

Role of c-Src in muscle differentiation has been controversial. Here, we investigated if c-Src positively or negatively regulates muscle differentiation, using H9c2 and C2C12 cell lines. Inhibition of c-Src by treatment with PP1 and SU6656, pharmacologic inhibitors of Src family kinases, or by expression of a dominant negative c-Src, all induced muscle differentiation in proliferation medium (PM).

View Article and Find Full Text PDF

The NF-kappaB/iNOS pathway stimulates muscle differentiation downstream of the PI 3-kinase/p38 MAPK pathway and diverse antioxidants block muscle differentiation. Therefore, we here investigated whether Nox 2 links those two myogenic pathways in H9c2 and C2C12 myoblasts. Compared with the proliferation stage, ROS generation was enhanced from the early stage of differentiation and gradually increased as differentiation progressed.

View Article and Find Full Text PDF