Calcium metal batteries with high capacity and low cost are promising alternatives to Li-ion batteries for large-scale energy storage. However, its development is crucially impeded by the irreversible Ca metal anode, which is highly associated with uncontrollable Ca plating/stripping. Here, we report a new riveting strategy to regulate the nucleation and growth of a Ca metal anode in the 3D structure of a carbon nanotube film (CNF) by introducing in situ-formed Na metal mediators.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
December 2024
Objectives: Maternal exposure to environmental endocrine disruptors, such as phthalates, during pregnancy is a significant risk factor for the development of hypospadias. By consolidating existing research on the mechanisms by which phthalates induce hypospadias in rodent models, this systematic review aims to organize and analyze the discovered mechanisms and their potential connections.
Methods: The study involved all articles that explored the mechanisms of phthalate-induced hypospadias using rodent models.
The flame retardant bisphenol AP bis(diphenyl phosphate) (BAPDP) is synthesized from triphenyl phosphate and bisphenol AP via transesterification, producing a polycarbonate/acrylonitrile-butadiene-styrene (PC/ABS) with a high flame retardancy and thermal stability. In this study, flame-retardant PC/ABS blends with various BAPDP contents are prepared, and their flame retardancy is studied using the limit oxygen index, vertical combustion, thermogravimetric analysis, and cone calorimeter testing. With a BAPDP content of 20 wt%, the product exhibits a limiting oxygen index of 25.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
Joint source channel anytime coding (JSCAC) is a kind of joint source channel coding (JSCC) systems based on the causal spatially coupled coding and joint expanding window decoding (JEWD) techniques. JSCAC demonstrates greatly improved error correction performance, as well as higher decoding complexity. This work proposes a joint hybrid window decoding (JHWD) algorithm for JSCAC systems, aiming to reduce the decoding complexity while maintaining comparable error correction performance with the state of the art.
View Article and Find Full Text PDFCorrelative imaging of fluorescence microscopy and soft X-ray microscopy plays a crucial role in exploring the relationship between structure and function in cellular biology. However, the current correlative imaging methods are limited either to off-line or low-resolution fluorescence imaging. In this study, we developed an integrated on-line cryogenic photoactivated localization microscopy (cryo-PALM) system at a soft X-ray microscopy station.
View Article and Find Full Text PDFAbnormal levels of zinc ions within endo-lysosomes have been implicated in the progression of Alzheimer's disease (AD), yet the detection of low-concentration zinc ions at the organelle level remains challenging. Here we report the design of an endo-lysosome-targeted fluorescent reporter, Znluor, for imaging endogenous zinc ions. Znluor is constructed from an amphiphilic DNA framework (DNF) with programmable size and shape, which can encapsulate zinc-responsive fluorophores within its hydrophobic nanocavity.
View Article and Find Full Text PDFBacterial damage has significantly impacted humanity, prompting the control of harmful microorganisms and infectious diseases. In this study, antibacterial bio-based PA56 fibres were prepared with high-speed spinning using ethylene-methyl acrylate-glycidyl methacrylate terpolymer (EMA) as the compatibiliser and polypentamethylene guanidine sulphate (PPGS) as the antibacterial agent. The effects of PPGS content on the properties of PA56 draw-textured yarns (DTYs) were investigated.
View Article and Find Full Text PDFSoft X-ray imaging is a powerful tool to explore the structure of cells, probe material with nanometer resolution, and investigate the energetic phenomena in the universe. Conventional soft X-ray image sensors are by and large Si-based charge coupled devices that suffer from low frame rates, complex fabrication processes, mechanical inflexibility, and required cooling below -60 °C. Here, a soft X-ray photodiode is reported based on low-cost metal halide perovskite with comparable performance to commercial Si-based device.
View Article and Find Full Text PDFChromium (Cr) transformation in soils mediated by iron (Fe) (oxyhr)oxides, Fe(II), organic matter (OM), and microbes is largely unexplored. Here, their coupling processes and mechanisms were investigated during anoxic incubation experiments of four Cr(VI) spiked soil samples with distinct physicochemical properties from the tropical and subtropical regions of China. It demonstrates that easily oxidizable organic carbon (EOC, 55-84%) and microbes (16-48%) drive Cr(VI) reduction in soils enriched with goethite and/or hematite, among which in dryland soils microbial sulfate reduction may also be involved.
View Article and Find Full Text PDFUnderstanding the interface between nanomaterials and lipoproteins is crucial for gaining insights into their impact on lipoprotein structure and lipid metabolism. Here, we use graphene oxide (GOs) nanosheets as a controlled carbon nanomaterial model to study how surface properties influence lipoprotein corona formation and show that GOs have strong binding affinity with low-density lipoprotein (LDL). We use advanced techniques including X-ray reflectivity, circular dichroism, and molecular simulations to explore the interfacial interactions between GOs and LDL.
View Article and Find Full Text PDFChemotherapy and radiotherapy in combination with sequence regimens are recognized as the current major strategy for suppressing postoperative tumor recurrence. However, systemic side effects and poor in-field cooperation of the two therapies seriously impair the therapeutic efficacy of patients. The combination of brachytherapy and chemotherapy through innovative biomaterials has proven to be an important strategy to achieve synergistic effects of radiotherapy and chemotherapy in-time and in-field.
View Article and Find Full Text PDFThe properties of liquid-liquid interfaces are intricately linked to its structure, with a particular focus on the concentration distribution within the interface. To obtain precise information regarding the concentration distribution, we have developed a high-resolution soft X-ray imaging method for liquid-liquid interfaces. This work focused on representative partially miscible systems, analyzing the interfacial concentration distribution profiles of water-alkanols under both steady-state and dynamic processes, and obtaining the diffusion coefficients of different water concentrations in alkanols.
View Article and Find Full Text PDFBackground & Aims: Persistent cholestasis has been associated with poor prognosis after orthotopic liver transplantation. In this study, we aimed to investigate how the accumulation of tauro-beta-muricholic acid (TβMCA), resulting from the reprogramming of bile acid (BA) metabolism during liver ischemia/reperfusion (IR) stress, attenuates liver inflammation.
Methods: Ingenuity Pathway Analysis was performed using transcriptome data from a murine hepatic IR model.
The widespread use of plastic products in daily life has raised concerns about the health hazards associated with nanoplastics (NPs). When exposed, NPs are likely to infiltrate the bloodstream, interact with plasma proteins, and trigger macrophage recognition and clearance. In this study, we focused on establishing a correlation between the unique protein coronal signatures of high-density (HDPE) and low-density (LDPE) polyethylene (PE) NPs with their ultimate impact on macrophage recognition and cytotoxicity.
View Article and Find Full Text PDFVisual ranging technology holds great promise in various fields such as unmanned driving and robot navigation. However, complex dynamic environments pose significant challenges to its accuracy and robustness. Existing monocular visual ranging methods are susceptible to scale uncertainty, while binocular visual ranging is sensitive to changes in lighting and texture.
View Article and Find Full Text PDFBackground: Pulmonary emphysema is a part of chronic obstructive pulmonary disease, which is an irreversible chronic respiratory disease. In order to avoid further damage to lung tissue, early diagnosis and treatment of pulmonary emphysema is essential.
Purpose: Early pulmonary emphysema diagnosis is difficult with conventional radiographic imaging.
Synchrotron-based X-ray microscopy (XRM) has garnered widespread attention from researchers due to its high spatial resolution and excellent energy (element) resolution. Existing molecular probes suitable for XRM include immune probes and genetic labeling probes, enabling the precise imaging of various biological targets within cells. However, immune labeling techniques are prone to cross-interference between antigens and antibodies.
View Article and Find Full Text PDFThe limited transparency of the inner decision-making mechanism in deep neural networks (DNN) and other machine learning (ML) models has hindered their application in several domains. In order to tackle this issue, feature attribution methods have been developed to identify the crucial features that heavily influence decisions made by these black box models. However, many feature attribution methods have inherent downsides.
View Article and Find Full Text PDFHigh-quality perovskite films are essential for achieving high performance of optoelectronic devices; However, solution-processed perovskite films are known to suffer from compositional and structural inhomogeneity due to lack of systematic control over the kinetics during the formation. Here, the microscopic homogeneity of perovskite films is successfully enhanced by modulating the conversion reaction kinetics using a catalyst-like system generated by a foaming agent. The chemical and structural evolution during this catalytic conversion is revealed by a multimodal synchrotron toolkit with spatial resolutions spanning many length scales.
View Article and Find Full Text PDFObjectives: Stereotactic body radiotherapy (SBRT) is a treatment option for patients with early-stage non-small cell lung cancer (NSCLC) who are unfit for surgery. Some patients may experience distant metastasis. This study aimed to develop and validate a radiomics model for predicting distant metastasis in patients with early-stage NSCLC treated with SBRT.
View Article and Find Full Text PDFBackground: As an unconventional subpopulation of T lymphocytes, γδ T cells can recognize antigens independently of major histocompatibility complex restrictions. Recent studies have indicated that γδ T cells play contrasting roles in tumor microenvironments-promoting tumor progression in some cancers (eg, gallbladder and leukemia) while suppressing it in others (eg, lung and gastric). γδ T cells are mainly enriched in peripheral mucosal tissues.
View Article and Find Full Text PDFUnderstanding the spatial orientation of nanoparticles and the corresponding subcellular architecture events favors uncovering fundamental toxic mechanisms and predicting response pathways of organisms toward environmental stressors. Herein, we map the spatial location of label-free citrate-coated Ag nanoparticles (Cit-AgNPs) and the corresponding subcellular reorganization in microalgae by a noninvasive 3D imaging approach, cryo-soft X-ray tomography (cryo-SXT). Cryo-SXT near-natively displays the 3D maps of Cit-AgNPs presenting in rarely identified sites, namely, extracellular polymeric substances (EPS) and the cytoplasm.
View Article and Find Full Text PDF