Publications by authors named "Yong Da Sie"

Metastatic cancer cells are frequently deficient in WWOX protein or express dysfunctional WWOX (designated WWOXd). Here, we determined that functional WWOX-expressing (WWOXf) cells migrate collectively and expel the individually migrating WWOXd cells. For return, WWOXd cells induces apoptosis of WWOXf cells from a remote distance.

View Article and Find Full Text PDF

Proapoptotic tumor suppressor WWOX is upregulated in the early stage of cancer initiation, which probably provides limitation to cancer growth and progression. Later, WWOX protein is reduced to enhance cancer cell growth, migration, invasiveness and metastasis. To understand how WWOX works in controlling cancer progression, here we demonstrate that apoptotic stress mediated by ectopic WWOX stimulated cancer cells to secrete basic fibroblast growth factor (bFGF) in order to support capillary microtubule formation.

View Article and Find Full Text PDF

Conventional temporal focusing-based multiphoton excitation microscopy (TFMPEM) can offer widefield optical sectioning with an axial excitation confinement of a few microns. To improve the axial confinement of TFMPEM, a binary computer-generated Fourier hologram (CGFH) via a digital-micromirror-device (DMD) was implemented to intrinsically improve the axial confinement by filling the back-focal aperture of the objective lens. Experimental results show that the excitation focal volume can be condensed and the axial confinement improved about 24% according to the DMD holography.

View Article and Find Full Text PDF

Observing dynamic micro-scale phenomena occurring at millisecond time scales, such as organism activity, micron particle flows, or any opaque object observation, requires volumetric microscopy techniques able to achieve high data acquisition rates while maintaining contrast so that measurement of fine micro-scale features is possible. In realizing this purpose, the light-field (LF) technique has already been used on three-dimensional (3D) scene capturing and even for microscopic visualizations. In studying the ability and feasibility of 3D surface morphology reconstruction via LF microscopy, we adopted a lab-made LF microscope and integrated a four-dimensional Fourier slice algorithm and a Markov random field propagation algorithm.

View Article and Find Full Text PDF
Article Synopsis
  • A new type of microscope called the temporal focusing-based multiphoton excitation microscope (TFMPEM) uses a digital micromirror device for both light dispersion and simultaneous patterned illumination.
  • This microscope has improved its axial excitation confinement (AEC) from 3.0 μm to 1.5 μm, enhancing focus by 50%.
  • By employing the TFMPEM with a HiLo technique, biotissue images demonstrate significantly better contrast and reduced scattering, showcasing its effectiveness compared to traditional methods.
View Article and Find Full Text PDF

Rationale: Conventional 3-dimensional (3D) printing techniques cannot produce structures of the size at which individual cells interact.

Objective: Here, we used multiphoton-excited 3D printing to generate a native-like extracellular matrix scaffold with submicron resolution and then seeded the scaffold with cardiomyocytes, smooth muscle cells, and endothelial cells that had been differentiated from human-induced pluripotent stem cells to generate a human-induced pluripotent stem cell-derived cardiac muscle patch (hCMP), which was subsequently evaluated in a murine model of myocardial infarction.

Methods And Results: The scaffold was seeded with ≈50 000 human-induced pluripotent stem cell-derived cardiomyocytes, smooth muscle cells, and endothelial cells (in a 2:1:1 ratio) to generate the hCMP, which began generating calcium transients and beating synchronously within 1 day of seeding; the speeds of contraction and relaxation and the peak amplitudes of the calcium transients increased significantly over the next 7 days.

View Article and Find Full Text PDF

In this study, three-dimensional (3D) multi-component microstructures were precisely fabricated via multiphoton excited photochemistry using a femtosecond laser direct-writing system with proposed repetition positioning and vector scanning techniques. Extracellular matrix (ECM) proteins, such as fibronectin (FN), are difficult to stack and form 3D structures larger than several-hundred microns in height due to the nature of their protein structure. Herein, to fabricate complex 3D microstructures with FN, a 3D scaffold was designed and formed from bovine serum albumin (BSA), after which human FN was inserted at specific locations on the BSA scaffold; in this manner, the fabricated ECM microstructure can guide cells in a 3D environment.

View Article and Find Full Text PDF

In this study, the light diffraction of temporal focusing multiphoton excitation microscopy (TFMPEM) and the excitation patterning of nonlinear structured-illumination microscopy (NSIM) can be simultaneously and accurately implemented via a single high-resolution digital micromirror device. The lateral and axial spatial resolutions of the TFMPEM are remarkably improved through the second-order NSIM and projected structured light, respectively. The experimental results demonstrate that the lateral and axial resolutions are enhanced from 397 nm to 168 nm (2.

View Article and Find Full Text PDF

This Letter presents an enhanced temporal focusing-based multiphoton excitation (MPE) microscope in which the conventional diffraction grating is replaced by a digital micromirror device (DMD). Experimental results from imaging a thin fluorescence film show that the 4.0 μm axial resolution of the microscope is comparable with that of a setup incorporating a 600  lines/mm grating; hence, the optical sectioning ability of the proposed setup is demonstrated.

View Article and Find Full Text PDF