Publications by authors named "Yoles E"

Alzheimer's disease has an increasing prevalence in the population world-wide, yet current diagnostic methods based on recommended biomarkers are only available in specialized clinics. Due to these circumstances, Alzheimer's disease is usually diagnosed late, which contrasts with the currently available treatment options that are only effective for patients at an early stage. Blood-based biomarkers could fill in the gap of easily accessible and low-cost methods for early diagnosis of the disease.

View Article and Find Full Text PDF

Background: Circulating immune cells including autoreactive T cells and monocytes have been documented as key players in maintaining, protecting and repairing the central nervous system (CNS) in health and disease. Here, we hypothesized that neurodegenerative diseases might be associated, similarly to tumors, with increased levels of circulating peripheral myeloid derived suppressor cells (MDSCs), representing a subset of suppressor cells that often expand under pathological conditions and inhibit possible recruitment of helper T cells needed for fighting off the disease.

Methods And Findings: We tested this working hypothesis in amyotrophic lateral sclerosis (ALS) and its mouse model, which are characterized by a rapid progression once clinical symptoms are evident.

View Article and Find Full Text PDF

Accidental organophosphate poisoning resulting from environmental or occupational exposure, as well as the deliberate use of nerve agents on the battlefield or by terrorists, remain major threats for multi-casualty events, with no effective therapies yet available. Even transient exposure to organophosphorous compounds may lead to brain damage associated with microglial activation and to long-lasting neurological and psychological deficits. Regulation of the microglial response by adaptive immunity was previously shown to reduce the consequences of acute insult to the central nervous system (CNS).

View Article and Find Full Text PDF

The ability of the central nervous system to cope with stressful conditions was shown to be dependent on proper T-cell-mediated immune response. Because the therapeutic window for neuroprotection after acute insults such as stroke is relatively narrow, we searched for a procedure that would allow the relevant T cells to be recruited rapidly. Permanent middle cerebral artery occlusion was induced in adult rats.

View Article and Find Full Text PDF

Spinal cord injury is a devastating condition of the central nervous system (CNS), often resulting in severe loss of tissue, functional impairment, and only limited repair. Studies over the last few years have shown that response to the insult and spontaneous attempts at repair are multiphasic processes, with varying and sometimes conflicting requirements. This knowledge has led to novel strategies of therapeutic intervention.

View Article and Find Full Text PDF

Object: A Phase I, open-label nonrandomized study was conducted to assess the safety and tolerability of incubated autologous macrophages administered to patients with acute complete spinal cord injury (SCI).

Methods: This therapy was first tested in rat models of spinal cord transection and contusion, in which it was shown to promote motor recovery. The procedure developed for clinical use consists of isolating monocytes from patient blood and incubating them ex vivo with autologous dermis.

View Article and Find Full Text PDF

The failure of the spinal cord to recover after injury has been associated with the immune privilege mechanism that suppresses immune activity throughout the central nervous system. Primed macrophages and dendritic cells were shown to promote neurological recovery in preclinical models of spinal cord injury. A cell therapy consisting of autologous incubated macrophages is now being tested on spinal cord injury patients in clinical trials.

View Article and Find Full Text PDF

Uncontrolled inflammation is considered to exacerbate the neuronal loss that follows spinal cord trauma. However, controlled inflammation response appears to be beneficial. Skin-coincubated macrophages injected into contused spinal cord of rats resulted in improved motor recovery and reduced spinal cyst formation.

View Article and Find Full Text PDF

Injury-induced self-destructive processes cause significant functional loss after incomplete spinal cord injury (SCI). Cellular elements of both the innate (macrophage) and the adaptive (T-cell) immune response can, if properly activated and controlled, promote post-traumatic regrowth and protection after SCI. Dendritic cells (DCs) trigger activation of effector and regulatory T-cells, providing a link between the functions of the innate and the adaptive immune systems.

View Article and Find Full Text PDF

Axonal injury in the central nervous system (CNS) results in the degeneration of directly damaged fibers and also in the secondary degeneration of fibers that escaped the primary insult. Studies have shown that a protective T cell-mediated autoimmunity directed against myelin-related self-antigens is a physiological response to CNS insult, spontaneously elicited in strains that are constitutionally resistant to experimental autoimmune encephalomyelitis (EAE) but not in EAE-susceptible strains. The protective response following axonal injury can be induced in susceptible rats and boosted in resistant rats by passive or active immunization with myelin-related antigens.

View Article and Find Full Text PDF

Closed head injury often has a devastating outcome, partly because the insult, like other injuries to the central nervous system (CNS), triggers self-destructive processes. During studies of the response to other CNS insults, it was unexpectedly discovered that the immune system, if well controlled, provides protection against self-destructive activities. Here we show that in mice with closed head injury, the immune system plays a key role in the spontaneous recovery.

View Article and Find Full Text PDF

Therapeutic vaccination with Copaxone (glatiramer acetate, Cop-1) protects motor neurons against acute and chronic degenerative conditions. In acute degeneration after facial nerve axotomy, the number of surviving motor neurons was almost two times higher in Cop-1-vaccinated mice than in nonvaccinated mice, or in mice injected with PBS emulsified in complete Freund's adjuvant (P < 0.05).

View Article and Find Full Text PDF

Purpose: To evaluate the neuroprotective effect of memantine, an NMDA receptor channel blocker, in two retinal ganglion cell (RGC) injury models in rats.

Methods: Neuroprotective effect of memantine was tested in partial optic nerve injury and chronic ocular hypertensive models. In the optic nerve injury model, memantine (0.

View Article and Find Full Text PDF

Glutamate is an essential neurotransmitter in the CNS. However, at abnormally high concentrations it becomes cytotoxic. Recent studies in our laboratory showed that glutamate evokes T cell-mediated protective mechanisms.

View Article and Find Full Text PDF

Myelin-specific encephalitogenic T cells, when passively transferred into rats or mice, cause an experimental autoimmune disease. Previous studies by our group have shown that (a) the same cells also significantly reduce post-traumatic degeneration in these animals after injury to the central nervous system, (b) this beneficial autoimmunity is a physiological response, and (c) animals differ in their ability to resist injurious conditions, and the ability to resist post-traumatic degeneration correlates with resistance to the development of an autoimmune disease. Here we show that optic nerve neurons in both resistant and susceptible rat strains can be protected from secondary degeneration after crush injury by immunization with myelin basic protein emulsified in complete or incomplete Freund's adjuvant.

View Article and Find Full Text PDF

Purpose: Glaucoma is widely accepted as a neurodegenerative disease in which retinal ganglion cell (RGC) loss is initiated by a primary insult to the optic nerve head, caused, for example, by increased intraocular pressure (IOP). In some cases, the surviving RGCs, despite adequate IOP control, may continue to degenerate as a result of their heightened susceptibility to self-destructive processes evoked by the initial damage. In animal models of mechanical or biochemical injury to the optic nerve or retina, a T-cell-mediated immune response evoked by the insult helps to reduce this ongoing loss.

View Article and Find Full Text PDF

Functional loss after injury to the mammalian central nervous system (CNS) has been attributed not only to the immediate loss of neurons but also to secondary neuronal degeneration caused by the toxicity of physiological compounds present in abnormally high amounts as a result of the injury. One such compound appears to be the protease thrombin. Here we show that the beneficial effect of T cells directed against myelin self-antigens can be attributed, at least in part, to the ability of these 'autoimmune' T cells to produce antithrombin III.

View Article and Find Full Text PDF

Injuries to the central nervous system (CNS) evoke self-destructive processes, which eventually lead to a much greater loss of tissue than that caused by the trauma itself. The agents of self-destruction include physiological compounds, such as glutamate, which are essential for the proper functioning of the CNS, but become cytotoxic when their normal concentrations are exceeded. The CNS is equipped with buffering mechanisms that are specific for each compound.

View Article and Find Full Text PDF

Axonal injury initiates a process of neuronal degeneration, with resulting death of neuronal cell bodies. We show here that in C57BL/6J mice, previously shown to have a limited ability to manifest a post-traumatic protective immunity, the rate of neuronal survival is increased if IL-6 is deficient during the first 24 hours after optic nerve injury. Immunocytochemical staining preformed 7 days after the injury revealed an increased number of activated microglia in the IL-6-deficient mice compared to the wild-type mice.

View Article and Find Full Text PDF

Injury to the CNS is often followed by a spread of damage (secondary degeneration), resulting in neuronal losses that are substantially greater than might have been predicted from the severity of the primary insult. Studies in our laboratory have shown that injured CNS neurons can benefit from active or passive immunization with CNS myelin-associated antigens. The fact that autoimmune T-cells can be both beneficial and destructive, taken together with the established phenomenon of genetic predisposition to autoimmune diseases, raises the question: will genetic predisposition to autoimmune diseases affect the outcome of traumatic insult to the CNS? Here we show that the survival rate of retinal ganglion cells in adult mice or rats after crush injury of the optic nerve or intravitreal injection of a toxic dosage of glutamate is up to twofold higher in strains that are resistant to the CNS autoimmune disease experimental autoimmune encephalomyelitis (EAE) than in susceptible strains.

View Article and Find Full Text PDF

Primary damage caused by injury to the CNS is often followed by delayed degeneration of initially spared neurons. Studies in our laboratory have shown that active or passive immunization with CNS myelin-associated self-antigens can reduce this secondary loss. Here we show, using four experimental paradigms in rodents, that CNS trauma spontaneously evokes a beneficial T cell-dependent immune response, which reduces neuronal loss.

View Article and Find Full Text PDF

The progression of degeneration in chronic optic neuropathies or in animal models of optic nerve injury is thought to be caused, at least in part, by an increase in glutamate to abnormally high concentrations. We show here that glutamate, when injected in subtoxic amounts into the vitreal body of the rat eye, transduces a self-protecting signal that renders the retinal ganglion cells resistant to further toxicity, whether glutamate-derived or not. This neuroprotective effect is attained within 24 h and lasts at least 4 days.

View Article and Find Full Text PDF

Our group recently demonstrated that autoimmune T cells directed against central nervous system-associated myelin antigens protect neurons from secondary degeneration. We further showed that the synthetic peptide copolymer 1 (Cop-1), known to suppress experimental autoimmune encephalomyelitis, can be safely substituted for the natural myelin antigen in both passive and active immunization for neuroprotection of the injured optic nerve. Here we attempted to determine whether similar immunizations are protective from retinal ganglion cell loss resulting from a direct biochemical insult caused, for example, by glutamate (a major mediator of degeneration in acute and chronic optic nerve insults) and in a rat model of ocular hypertension.

View Article and Find Full Text PDF

The functional loss that often follows injury of the mammalian CNS has been attributed not only to the immediate neural loss, but also to secondary neuronal degeneration caused by toxic biochemical mediators in the environment of the injured nerve. We report here that a high thrombin content, produced as a result of injury-induced activation of prothrombin, appears to be an important mediator of secondary damage. Measurement of post-traumatic neuronal survival in vivo revealed that post-traumatic local application of the thrombin inhibitor N-alpha-(2-naphthylsulphonylglycyl)-4-(D,L)-amidinophenylalanine piperidide acetate in the rat optic nerve subjected to mild partial crush injury left twice as many retinal ganglion cells with functioning axons as in controls.

View Article and Find Full Text PDF