Publications by authors named "Yolandi van der Merwe"

Peripheral nerve injuries (PNIs) occur frequently and can lead to devastating and permanent sensory and motor function disabilities. Systemic tacrolimus (FK506) administration has been shown to hasten recovery and improve functional outcomes after PNI repair. Unfortunately, high systemic levels of FK506 can result in adverse side effects.

View Article and Find Full Text PDF

Background: Since adult mammalian retinal ganglion cells cannot regenerate after injury, we have recently established a whole-eye transplantation (WET) rat model that provides an intact optical system to investigate potential surgical restoration of irreversible vision loss. However, it remains to be elucidated whether physiological axoplasmic transport exists in the transplanted visual pathway.

New Method: We developed an in vivo imaging model system to assess WET integration using manganese-enhanced magnetic resonance imaging (MEMRI) in rats.

View Article and Find Full Text PDF

Purpose: To characterize the visual pathway integrity of five glaucoma animal models using diffusion tensor imaging (DTI).

Methods: Two experimentally induced and three genetically determined models of glaucoma were evaluated. For inducible models, chronic IOP elevation was achieved via intracameral injection of microbeads or laser photocoagulation of the trabecular meshwork in adult rodent eyes.

View Article and Find Full Text PDF

Glaucoma is a neurodegenerative disease that causes progressive, irreversible vision loss. Currently, intraocular pressure (IOP) is the only modifiable risk factor for glaucoma. However, glaucomatous degeneration may continue despite adequate IOP control.

View Article and Find Full Text PDF

Investigation of neurodegeneration in glaucoma, a leading cause of irreversible blindness worldwide, has been obfuscated by the lack of an efficient model that provides chronic, mild to moderate elevation of intraocular pressure (IOP) with preservation of optical media clarity for long term, in vivo interrogation of the structural and functional integrity of the retinal ganglion cells (RGCs). Here, we designed and formulated an injectable hydrogel based on in situ cross-linking of hyaluronic acid functionalized with vinyl sulfone (HA-VS) and thiol groups (HA-SH). Intracameral injection of HA-VS and HA-SH in C57BL/6J mice exhibited mild to moderate elevation of IOP with daily mean IOP ranged between 14 ± 3 and 24 ± 3 mmHg, which led to progressive, regional loss of RGCs evaluated with in vivo, time-lapse confocal scanning laser ophthalmoscopy; a reduction in fractional anisotropy in the optic nerve and the optic tract projected from the eye with increased IOP in diffusion tensor magnetic resonance imaging; a decrease in positive scotopic threshold response in electroretinography; and a decline in visual acuity measured with an optokinetic virtual reality system.

View Article and Find Full Text PDF

Injury to retinal ganglion cells (RGC), central nervous system neurons that relay visual information to the brain, often leads to RGC axon degeneration and permanently lost visual function. Herein this study shows matrix-bound nanovesicles (MBV), a distinct class of extracellular nanovesicle localized specifically to the extracellular matrix (ECM) of healthy tissues, can neuroprotect RGCs and preserve visual function after severe, intraocular pressure (IOP) induced ischemia in rat. Intravitreal MBV injections attenuated IOP-induced RGC axon degeneration and death, protected RGC axon connectivity to visual nuclei in the brain, and prevented loss in retinal function as shown by histology, anterograde axon tracing, manganese-enhanced magnetic resonance imaging, and electroretinography.

View Article and Find Full Text PDF

Although elevated intraocular pressure (IOP) and age are major risk factors for glaucoma, their effects on glaucoma pathogenesis remain unclear. This study examined the onset and progression of glaucomatous changes to ocular anatomy and physiology, structural and physiological brain integrity, and visuomotor behavior in the DBA/2J mice via non-invasive tonometry, multi-parametric magnetic resonance imaging (MRI) and optokinetic assessments from 5 to 12 months of age. Using T2-weighted MRI, diffusion tensor MRI, and manganese-enhanced MRI, increasing IOP elevation at 9 and 12 months old coincided with anterior chamber deepening, altered fractional anisotropy and radial diffusivity of the optic nerve and optic tract, as well as reduced anterograde manganese transport along the visual pathway respectively in the DBA/2J mice.

View Article and Find Full Text PDF

In peripheral nerve (PN) injuries requiring surgical repair, as in PN transection, cellular and ECM remodeling at PN epineurial repair sites is hypothesized to reduce PN functional outcomes by slowing, misdirecting, or preventing axons from regrowing appropriately across the repair site. Herein this study reports on deriving and analyzing fetal porcine urinary bladder extracellular matrix (fUB-ECM) by vacuum assisted decellularization, fabricating fUBM-ECM nerve wraps, and testing fUB-ECM nerve wrap biocompatibility and bioactivity in a trigeminal, infraorbital nerve (ION) branch transection and direct end-to-end repair model in rat. FUB-ECM nerve wraps significantly improved epi- and endoneurial organization and increased both neovascularization and growth associated protein-43 (GAP-43) expression at PN repair sites, 28-days post surgery.

View Article and Find Full Text PDF

Purpose: We discuss recent advances in extracellular vesicle (EV) technology as biomarkers, therapeutics, and drug delivery vehicles in the visual system with an emphasis on the retina.

Recent Findings: Retinal cell-type specific EVs can be detected in the blood and in the aqueous humor and EV miRNA cargoes can be used diagnostically to predict retinal disease progression. Studies have now shown EVs can deliver bioactive miRNA and AAV cargoes to the inner retinal cell layers and, in some models, improve retinal ganglion cell (RGC) survival and axon regeneration.

View Article and Find Full Text PDF

Central nervous system (CNS) neurons fail to regrow injured axons, often resulting in permanently lost neurologic function. Tacrolimus is an FDA-approved immunosuppressive drug with known neuroprotective and neuroregenerative properties in the CNS. However, tacrolimus is typically administered systemically and blood levels required to effectively treat CNS injuries can lead to lethal, off-target organ toxicity.

View Article and Find Full Text PDF

The eye is a complex structure composed of several interconnected tissues acting together, across the whole globe, to resist deformation due to intraocular pressure (IOP). However, most work in the ocular biomechanics field only examines the response to IOP over smaller regions of the eye. We used high-field MRI to measure IOP induced ocular displacements and deformations over the whole globe.

View Article and Find Full Text PDF

Central nervous system neurons often degenerate after trauma due to the inflammatory innate immune response to injury, which can lead to neuronal cell death, scarring, and permanently lost neurologic function. Extracellular matrix bioscaffolds, derived by decellularizing healthy tissues, have been widely used in both preclinical and clinical studies to promote positive tissue remodeling, including neurogenesis, in numerous tissues, with extracellular matrix from homologous tissues often inducing more positive responses. Extracellular matrix hydrogels are liquid at room temperature and enable minimally invasive extracellular matrix injections into central nervous system tissues, before gelation at 37℃.

View Article and Find Full Text PDF

Although manganese (Mn) can enhance brain tissues for improving magnetic resonance imaging (MRI) assessments, the underlying neural mechanisms of Mn detection remain unclear. In this study, we used Mn-enhanced MRI to test the hypothesis that different Mn entry routes and spatiotemporal Mn distributions can reflect different mechanisms of neural circuitry and neurodegeneration in normal and injured brains. Upon systemic administration, exogenous Mn exhibited varying transport rates and continuous redistribution across healthy rodent brain nuclei over a 2-week timeframe, whereas in rodents following photothrombotic cortical injury, transient middle cerebral artery occlusion, or neonatal hypoxic-ischemic brain injury, Mn preferentially accumulated in perilesional tissues expressing gliosis or oxidative stress within days.

View Article and Find Full Text PDF

Visual function has been shown to deteriorate prior to the onset of retinopathy in some diabetic patients and experimental animal models. This suggests the involvement of the brain's visual system in the early stages of diabetes. In this study, we tested this hypothesis by examining the integrity of the visual pathway in a diabetic rat model using in vivo multi-modal magnetic resonance imaging (MRI).

View Article and Find Full Text PDF

The microstructural organization and composition of the corneoscleral shell (CSS) determine the biomechanical behavior of the eye, and are important in diseases such as glaucoma and myopia. However, limited techniques can assess these properties globally, non-invasively and quantitatively. In this study, we hypothesized that multi-modal magnetic resonance imaging (MRI) can reveal the effects of biomechanical or biochemical modulation on CSS.

View Article and Find Full Text PDF

Adult mammalian CNS neurons often degenerate after injury, leading to lost neurologic functions. In the visual system, retinal or optic nerve injury often leads to retinal ganglion cell axon degeneration and irreversible vision loss. CNS axon degeneration is increasingly linked to the innate immune response to injury, which leads to tissue-destructive inflammation and scarring.

View Article and Find Full Text PDF

Purpose: Excitotoxicity has been linked to the pathogenesis of ocular diseases and injuries and may involve early degeneration of both anterior and posterior visual pathways. However, their spatiotemporal relationships remain unclear. We hypothesized that the effects of excitotoxic retinal injury (ERI) on the visual system can be revealed in vivo by diffusion tensor magnetic resonance imagining (DTI), manganese-enhanced magnetic resonance imagining (MRI), and optical coherence tomography (OCT).

View Article and Find Full Text PDF

Acellular biologic scaffolds are commonly used to facilitate the constructive remodeling of three of the four traditional tissue types: connective, epithelial, and muscle tissues. However, the application of extracellular matrix (ECM) scaffolds to neural tissue has been limited, particularly in the central nervous system (CNS) where intrinsic regenerative potential is low. The ability of decellularized liver, lung, muscle, and other tissues to support tissue-specific cell phenotype and function suggests that CNS-derived biologic scaffolds may help to overcome barriers to mammalian CNS repair.

View Article and Find Full Text PDF