Rhizophagus irregularis is the model species for arbuscular mycorrhizal fungi (AMF) research and the most widely propagated species for commercial plant biostimulants. Using asymbiotic and symbiotic cultivation systems initiated from single spores, advanced microscopy, Sanger sequencing of the glomalin gene, and PacBio sequencing of the partial 45S rRNA gene, we show that four strains of R. irregularis produce spores of two distinct morphotypes, one corresponding to the morphotype described in the R.
View Article and Find Full Text PDFSoil salinity constitutes a major abiotic stress that contributes to soil degradation and crop yield reduction. Using arbuscular mycorrhizal fungi (AMF) inoculation can help to alleviate these deleterious effects. Most researches on AMF application are dealing with ecological restoration, whereas little consideration has been given to agriculture and legume production.
View Article and Find Full Text PDF(1) Background: Soil degradation is an increasingly important problem in many parts of the world, particularly in arid and semiarid areas. Arbuscular mycorrhizal fungi (AMF) isolated from arid soils are recognized to be better adapted to these edaphoclimatic conditions than exogenous ones. Nevertheless, little is known about the importance of AMF inoculum sources on development in natural saline soils.
View Article and Find Full Text PDFArbuscular mycorrhizal fungi (AMF) are plant root symbionts that continuously carry thousands of nuclei in their spores and hyphae. This unique cellular biology raises fundamental questions regarding their nuclear dynamics. This review aims to address these by synthesizing current knowledge of nuclear content and behavior in these ubiquitous soil fungi.
View Article and Find Full Text PDFVery few studies reported the potential of arbuscular mycorrhizal symbiosis to dissipate hydrocarbons in aged polluted soils. The present work aims to study the efficiency of arbuscular mycorrhizal colonized wheat plants in the dissipation of alkanes and polycyclic aromatic hydrocarbons (PAHs). Our results demonstrated that the inoculation of wheat with Rhizophagus irregularis allowed a better dissipation of PAHs and alkanes after 16 weeks of culture by comparison to non-inoculated condition.
View Article and Find Full Text PDFSoil salinization is an increasingly important problem in many parts of the world, particularly under arid and semi-arid areas. Unfortunately, the knowledge about restoration of salt affected ecosystems using mycorrhizae is limited. The current study aims to investigate the impact of salinity on the microbial richness of the halophytic plant Tamarix articulata rhizosphere.
View Article and Find Full Text PDFThe use of microwave irradiation as a source of energy to clear and stain intra-radical arbuscular mycorrhizal fungi propagules has been tested on a variety of indigenous and cultivated herbaceous plants. The aim of the study was to evaluate the efficiency of microwave irradiation on root softening, fungi tissue staining, and preservation of DNA integrity for subsequent molecular analyses. The proposed methodology has been adapted from the standard procedures used to detect and quantify mycorrhizal root colonization levels.
View Article and Find Full Text PDFAn inorganic phosphate transporter gene sequence (852-bp section) allowed discrimination between 10 Glomus fungal species represented by 25 strains. It was particularly valuable in differentiating between morphologically similar species with nucleotide and amino acid sequence differences higher than 3%. This gene is proposed as a reliable barcode for the Glomeromycetes.
View Article and Find Full Text PDF