The objective of this study was to obtain information about the role of trace element imbalance in the pathogenesis of certain diseases in dogs and to evaluate the suitability of trace element profiling as an additional tool in the diagnosis. Serum trace element concentrations (copper, molybdenum, selenium and zinc) were measured in a cohort of healthy (control) dogs (n = 42) and dogs affected by hepatic (n = 25), gastrointestinal (n = 24), inflammatory/infection (n = 24), and renal (n = 22) diseases. These data were analyzed together with data on basic biochemical parameters (alanine aminotransferase, alkaline phosphatase, blood urea nitrogen, creatinine, albumin, globulin, and glucose) by using chemometric techniques.
View Article and Find Full Text PDFThis study was designed (i) to establish reference ranges for the essential trace element and background levels of toxic element exposure in the healthy/normal dog population, and (ii) to evaluate whether trace element concentrations vary in dogs suffering from different pathologies. Blood serum samples were collected from 187 healthy and diseased dogs at the Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Santiago de Compostela (northwest Spain). The samples were acid digested, and the concentrations of trace elements (Co, Cr, Cu, Fe, Mn, Mo, Ni, Se and Zn) and toxic elements (As, Cd, Hg and Pb) were determined by inductively coupled plasma-mass spectrometry (ICP-MS).
View Article and Find Full Text PDFThis study was designed to evaluate the influence of type of blood sample (serum or plasma) on essential and toxic element analysis in cattle. Paired plasma and serum samples ( = 20) were acid digested, and the concentrations of As, B, Ba, Ca, Cd, Co, Cr, Cu, Fe, Hg, Li, Mg, Mn. Mo, Ni, P, Pb, Sb, Se, Sr and Zn were determined by inductively coupled plasma mass spectrometry (ICP-MS).
View Article and Find Full Text PDF