Scientific insights into water photolysis and radiolysis are essential for estimating the direct and indirect effects of deoxyribonucleic acid (DNA) damage. Secondary electrons from radiolysis intricately associated with both effects. In our previous paper, we simulated the femtosecond (1 × 10 s) dynamics of secondary electrons ejected by energy depositions of 11-19 eV into water via high-energy electron transport using a time-dependent simulation code.
View Article and Find Full Text PDFIonizing radiation promotes mammary carcinogenesis. Induction of DNA double-strand breaks (DSBs) is the initial event after radiation exposure, which can potentially lead to carcinogenesis, but the dynamics of DSB induction and repair are not well understood at the tissue level. In this study, we used female rats, which have been recognized as a useful experimental model for studying radiation effects on the mammary gland.
View Article and Find Full Text PDFThe spur reaction, a spatially nonhomogeneous chemical reaction following ionization, is crucial in radiolysis or photolysis in liquids, but the spur expansion process has yet to be elucidated. One reason is the need to understand the role of the dielectric response of the solvating molecules surrounding the charged species generated by ionization. The dielectric response corresponds to the time evolution of the permittivity and might affect the chemical reaction-diffusion of the species in a spur expansion process.
View Article and Find Full Text PDFmolecular dynamics simulations are used to investigate the fragmentation dynamics following the double ionization of 2-deoxy-D-ribose (DR), a major component in the DNA chain. Different ionization scenarios are considered to provide a complete picture. First focusing on isolated DR, fragmentation patterns are determined for the ground electronic state, adding randomly distributed excitation energy to the nuclei.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2024
Core (C, N, and O 1s regions) and valence band electronic structures of bulk uracil and 5-fluoro-, -chloro-, and -iodouracils were investigated using X-ray photoemission spectroscopy and comprehensively compared with those of 5-bromouracil measured under the same experimental conditions before. The halogenation of uracil shifted the core peaks of the 5-position carbons toward the higher binding energy side and reduced the ionization potentials depending on the type of halogen. Theoretical calculations supported these results.
View Article and Find Full Text PDFThis study uses a time-dependent first-principles simulation code to investigate the transient dynamics of an ejected electron produced in the monochromatic deposition energy from 11 to 19 eV in water. The energy deposition forms a three-body single spur comprising a hydroxyl radical (OH˙), hydronium ion (HO), and hydrated electron (e). The earliest formation involves electron thermalization and delocalization dominated by the molecular excitation of water.
View Article and Find Full Text PDFAutophagy and senescence are closely related cellular responses to genotoxic stress, and play significant roles in the execution of cellular responses to radiation exposure. However, little is known about their interplay in the fate-decision of cells receiving lethal doses of radiation. Here, we report that autophagy precedes the establishment of premature senescence in normal human fibroblasts exposed to lethal doses of radiation.
View Article and Find Full Text PDFTo understand the mechanism underlying the high radio-sensitisation of living cells possessing brominated genomic DNA, X-ray photoelectron spectroscopy (XPS) using synchrotron X-rays with energies of 2000 or 2500 eV was used to study brominated and nonbrominated nucleobases, nucleosides and nucleotides. The bromine atom significantly reduced the energy gap between the valence and conduction states, although the core level states were not greatly affected. This finding was supported by quantum chemical calculation for the nucleobases and nucleosides.
View Article and Find Full Text PDFPurpose: To investigate the structural features of wild-type and phospho-mimicking mutated XRCC4 protein, a protein involved in DNA double-strand break repair.
Materials And Methods: XRCC4 with a HisTag were expressed by harboring plasmid DNA and purified. Phospho-mimicking mutants in which one phosphorylation site was replaced with aspartic acid were also prepared in order to reproduce the negative charge resulting from phosphorylation.
In this work, we investigate the physicochemical process of water photolysis to bridge physical and chemical processes by a newly developed first-principles calculation code. The deceleration, thermalization, delocalization, and initial hydration of the extremely low-energy electrons ejected by water photolysis are sequentially tracked in the condensed phase. We show herein the calculated results for these sequential phenomena during 300 fs.
View Article and Find Full Text PDFMany scientific insights into water radiolysis have been applied for developing life science, including radiation-induced phenomena, such as DNA damage and mutation induction or carcinogenesis. However, the generation mechanism of free radicals due to radiolysis remains to be fully understood. Consequently, we have encountered a crucial problem in that the initial yields connecting radiation physics to chemistry must be parameterized.
View Article and Find Full Text PDFIrreversible cell-cycle-arrested cells not undergoing cell divisions have been thought to be metabolically less active because of the unnecessary consumption of energy for cell division. On the other hand, they might be actively involved in the tissue microenvironment through an inflammatory response. In this study, we examined the mitochondria-dependent metabolism in human cells irreversibly arrested in response to ionizing radiation to confirm this possibility.
View Article and Find Full Text PDFWe examined here normal human cells with large deletions encompassing the hypoxanthine-phosphoribosyltransferase 1 (HPRT1) gene on X chromosome. Expression levels of genes on X chromosome were analyzed by microarray and RT-qPCR method, and differentially expressed genes (DEGs) were extracted. We found that DEGs were not limited to the genes flanking deleted regions but spread over the entire X chromosome.
View Article and Find Full Text PDFHistone proteins, building blocks of chromatins, participate in enzymatic reactions in cells heated at around 45°C though in vitro the denaturation of histones significantly proceeds at a similar temperature. It implies that unidentified mechanisms prevent thermal denaturation of histones in vivo. However, studies on the histone structures in the heated cells have been scarce.
View Article and Find Full Text PDFIonizing radiation causes various types of DNA damage, such as single- (SSBs) and double-strand breaks (DSBs), nucleobase lesions, abasic sites (AP sites), and cross-linking between complementary strands of DNA or DNA and proteins. DSBs are among the most harmful type of DNA damage, inducing serious genetic effects such as cell lethality and mutation. Nucleobase lesions and AP sites, on the other hand, may be less deleterious and are promptly repaired by base excision repair (BER) pathways.
View Article and Find Full Text PDFMicrotubules, one of the cytoskeletons, are highly dynamic structures that play a variety of roles in maintaining cell morphology, cell division and intracellular transport. Microtubules are composed of heterodimers of α- and β-tubulins, which are repeatedly polymerized and depolymerized. To investigate the radiation-induced impacts on the polymerization reaction of tubulins, we evaluated the molecular interactions between normal and irradiated tubulins.
View Article and Find Full Text PDFIn this study, an improved method using scavenger-free plasmid DNA was established to accurately determine yields of DNA damage induced by direct and indirect actions of ionizing radiation. The scavenger-free plasmid DNA was obtained by dialysis over 5-7 days, and the DNA solvent was replaced with phosphate buffer to completely remove impurities, which could be scavengers of radicals produced as a result of water radiolysis. DNA samples of films and dilute aqueous solutions were used to separately evaluate contributions of the direct and indirect actions of X rays (150-160 kVp).
View Article and Find Full Text PDFCancers (Basel)
February 2022
The genotoxicity of radiation on germ cells may be passed on to the next generation, thus its elucidation is not only a scientific issue but also an ethical, legal, and social issue in modern society. In this article, we briefly overview the effects of radiation on spermatogenesis and its associated genotoxicity, including the latest findings in the field of radiobiology. The potential role of transgenerational effects is still poorly understood, and further research in this area is desirable.
View Article and Find Full Text PDFThe non-targeted effects of radiation have been known to induce significant alternations in cell survival. Although the effects might govern the progression of tumor sites following advanced radiotherapy, the impacts on the intercellular control of the cell cycle following radiation exposure with a modified field, remain to be determined. Recently, a fluorescent ubiquitination-based cell-cycle indicator (FUCCI), which can visualize the cell-cycle phases with fluorescence microscopy in real time, was developed for biological cell research.
View Article and Find Full Text PDFPurpose: To identify the bonding sites of initial radiation interaction with DNA and to trace the following chemical reaction sequences on the pathway of damage induction, we carry out a spectroscopy XIL (X-ray induced luminescence) using soft X-ray synchrotron radiation. This is a nondestructive analysis of the excited intermediate species produced in a molecular mechanism on the damage induction pathway.
Materials And Methods: We introduce aqueous samples of UMP (uridine-5'-monophosphate) in the vacuum by the use of a liquid micro-jet technique.
To investigate the repairability of X-ray induced DNA damage, particularly non-double-strand breaks in living cells, enhanced green fluorescent protein (EGFP)-expressing plasmids X-ray irradiated and then transfected into nonirradiated human cells, MCF7 and MCF10A. Live-cell imaging of EGFP fluorescence was performed to measure the efficiency of plasmid repair in cells. The number of EGFP-expressing cells significantly decreased with increasing X-ray dose for both cell lines.
View Article and Find Full Text PDFThe genomic landscape neighboring large deletions including the hypoxanthine-guanine phosphoribosyl transferase (HPRT) locus on human X chromosome in 6-thioguanine-resistant mutants originating from immortalized human fibroblast cells exposed to X rays was characterized by real-time quantitative PCR (qPCR)-based analyses. Among the 13 mutant clones with large deletions extending over several Mb, including the HPRT locus, revealed by 10 conventional sequence-tagged site (STS) markers, three clones bearing the largest deletions were selected for further qPCR analysis using another 21 STS markers and 15 newly designed PCR primer pairs. The results indicated that the major deletions were in very specific regions between the 130-Mb and 140-Mb positions containing the HPRT locus on the X chromosome and, contrary to our initial expectations, additional minor deletions were distributed in a patchwork pattern.
View Article and Find Full Text PDFSpatially fractionated radiation therapy (SFRT) has been based on the delivery of a single high-dose fraction to a large treatment area that has been divided into several smaller fields, reducing the overall toxicity and adverse effects. Complementary microbeam studies have also shown an effective tissue-sparing effect (TSE) in various tissue types and species after spatially fractionated irradiation at the microscale level; however, the underlying biological mechanism remains elusive. In the current study, using the combination of an ex vivo mouse spermatogenesis model and high-precision X-ray microbeams, we revealed the significant TSE for maintaining spermatogenesis after spatially fractionated microbeam irradiation.
View Article and Find Full Text PDFSeveral studies have demonstrated that mitochondria are critically involved in the pleiotropic manifestation of radiation effects. While conventional whole-cell irradiation compromises the function of mitochondria, the effects of subcellular targeted radiation are not yet fully understood. In this study, normal human diploid cells with cell-cycle indicators were irradiated using a synchrotron X-ray microbeam, and mitochondrial membrane potential was quantified by JC-1 over the 72-h period postirradiation.
View Article and Find Full Text PDFInt J Radiat Biol
January 2023
Purpose: To clarify the radiosensitization mechanism masking the Auger effect of the cells possessing brominated DNA, the electronic properties of DNA-related molecules containing Br were investigated by X-ray spectroscopy and specific heat measurement.
Materials And Methods: X-ray absorption near-edge structure (XANES) and X-ray photoemission spectroscopy (XPS) were used to measure the electronic properties of the nucleotides with and without Br. We determined the specific heat of 5-bromouracil crystals with thymine as a reference molecule at low temperatures of 3-48 K to calculate the microscopic state numbers.