Microbes have evolved intricate communication systems that enable individual cells of a population to send and receive signals in response to changes in their immediate environment. In the fission yeast Schizosaccharomyces pombe, the oxylipin nitrogen signaling factor (NSF) is part of such communication system, which functions to regulate the usage of different nitrogen sources. Yet, the pathways and mechanisms by which NSF acts are poorly understood.
View Article and Find Full Text PDFStrategic design for the construction of contiguous tetrasubstituted carbon centers represents a daunting challenge in synthetic organic chemistry. Herein, we report a combined experimental and computational investigation aimed at developing catalytic aerobic carbooxygenation, involving the intramolecular addition of tertiary radicals to geminally disubstituted alkenes, followed by aerobic oxygenation. This reaction provides a straightforward route to various α,α,β,β-tetrasubstituted γ-lactones, which can be readily transformed into hexasubstituted γ-lactones through allylation/translactonization.
View Article and Find Full Text PDFUnlabelled: causes cryptococcosis, one of the most prevalent fungal diseases, generally characterized by meningitis. There is a limited and not very effective number of drugs available to combat this disease. In this manuscript, we show the host defense peptide mimetic brilacidin (BRI) as a promising antifungal drug against .
View Article and Find Full Text PDFBioorg Med Chem Lett
September 2024
We have synthesized 10 analogs of oxylipins, which are nitrogen signaling factors (NSFs) that mediate cell-to-cell communication in the fission yeast Schizosaccharomyces pombe, and evaluated their structure-activity relationships with the aim of developing molecular probes for NSFs. We found that the OH or OAc group at C10 could be replaced with a compact amide (17) or carbamate (19). Introducing an alkyne as a detection tag at C10 led to decreased, though still sufficient, activity.
View Article and Find Full Text PDFRising drug resistance among pathogenic fungi, paired with a limited antifungal arsenal, poses an increasing threat to human health. To identify antifungal compounds, we screened the RIKEN natural product depository against representative isolates of four major human fungal pathogens. This screen identified NPD6433, a triazenyl indole with broad-spectrum activity against all screening strains, as well as the filamentous mold Aspergillus fumigatus.
View Article and Find Full Text PDFOverexpression can help life adapt to stressful environments, making an examination of overexpressed genes valuable for understanding stress tolerance mechanisms. However, a systematic study of genes whose overexpression is functionally adaptive (GOFAs) under stress has yet to be conducted. We developed a new overexpression profiling method and systematically identified GOFAs in Saccharomyces cerevisiae under stress (heat, salt, and oxidative).
View Article and Find Full Text PDFFK506-binding protein with a molecular weight of 12 kDa (FKBP12) is a receptor of the immunosuppressive drugs, FK506 and rapamycin. The physiological functions of FKBP12 remain ambiguous because of its nonessentiality and multifunctionality. Here, we show that FKBP12 promotes the utilization of serine as a nitrogen source and regulates the isoleucine biosynthetic pathway in fission yeast.
View Article and Find Full Text PDFTwo novel glycosylated polyketide-peptide hybrid macrolides, argenteolides A () and B (), were isolated from an actinomycete . Argenteolide A () contains a unique 5/5/5 tricyclic system in a 20-membered macrocycle. Their structures were elucidated by extensive spectroscopic analysis, and their stereochemical configurations were established through the application of chemical derivatization, -based configuration analysis, DP4+ calculation, and electronic circular dichroism calculation.
View Article and Find Full Text PDFMicroorganisms and plants produce siderophores, which function to transport environmental iron into cells as well as participate in cellular iron use and deposition. Their biological functions are diverse although their role in primary metabolism is poorly understood. Ferrichrome is a fungal-type siderophore synthesized by nonribosomal peptide synthetase (NRPS).
View Article and Find Full Text PDFBiological networks constructed from varied data can be used to map cellular function, but each data type has limitations. Network integration promises to address these limitations by combining and automatically weighting input information to obtain a more accurate and comprehensive representation of the underlying biology. We developed a deep learning-based network integration algorithm that incorporates a graph convolutional network framework.
View Article and Find Full Text PDFHost-associated bacteria are increasingly being recognized as underexplored sources of bioactive natural products with unprecedented chemical scaffolds. A recently identified example is the plant-root-associated marine bacterium Gynuella sunshinyii of the chemically underexplored order Oceanospirillales. Its genome contains at least 22 biosynthetic gene clusters, suggesting a rich and mostly uncharacterized specialized metabolism.
View Article and Find Full Text PDFIn this study, a phenylboronic ester-activated aryl iodide-selective Buchwald-Hartwig-type amination was developed. When the reaction of aryl iodides and aryl/aliphatic amines using Ni(acac) is carried out in the presence of phenylboronic ester, the Buchwald-Hartwig-type amination proceeds smoothly to afford the corresponding amines in high yields. This reaction does not proceed in the absence of phenylboronic ester.
View Article and Find Full Text PDFFungal infections cause more than 1.5 million deaths annually. With an increase in immune-deficient susceptible populations and the emergence of antifungal drug resistance, there is an urgent need for novel strategies to combat these life-threatening infections.
View Article and Find Full Text PDFThe human immunodeficiency virus type 1 (HIV-1) accessory protein, Vpr, arrests the cell cycle of the G2 phase, and this Vpr-mediated G2 arrest is implicated in an efficient HIV-1 spread in monocyte-derived macrophages. Here, we screened new candidates for Vpr-targeting HIV-1 inhibitors by using fission yeast- and mammalian cell-based high-throughput screening. First, fission yeast strains expressing the HIV-1 Vpr protein were generated and then treated for 48 h with 20 μM of a synthetic library, including 140,000 chemical compounds.
View Article and Find Full Text PDFFungal infections contribute to over 1.5 million deaths annually, with Candida albicans representing one of the most concerning human fungal pathogens. While normally commensal in nature, compromise of host immunity can result in C.
View Article and Find Full Text PDFThe limited number of available effective agents necessitates the development of new antifungals. We report that jervine, a jerveratrum-type steroidal alkaloid isolated from Veratrum californicum, has antifungal activity. Phenotypic comparisons of cell wall mutants, K1 killer toxin susceptibility testing, and quantification of cell wall components revealed that β-1,6-glucan biosynthesis was significantly inhibited by jervine.
View Article and Find Full Text PDFFungal pathogens pose a global threat to human health, with Candida albicans among the leading killers. Systematic analysis of essential genes provides a powerful strategy to discover potential antifungal targets. Here, we build a machine learning model to generate genome-wide gene essentiality predictions for C.
View Article and Find Full Text PDFThe pathogen Mycobacterium tuberculosis (Mtb) evades the innate immune system by interfering with autophagy and phagosomal maturation in macrophages, and, as a result, small molecule stimulation of autophagy represents a host-directed therapeutics (HDTs) approach for treatment of tuberculosis (TB). Here we show the marine natural product clionamines activate autophagy and inhibit Mtb survival in macrophages. A yeast chemical-genetics approach identified Pik1 as target protein of the clionamines.
View Article and Find Full Text PDFA common strategy for identifying molecules likely to possess a desired biological activity is to search large databases of compounds for high structural similarity to a query molecule that demonstrates this activity, under the assumption that structural similarity is predictive of similar biological activity. However, efforts to systematically benchmark the diverse array of available molecular fingerprints and similarity coefficients have been limited by a lack of large-scale datasets that reflect biological similarities of compounds. To elucidate the relative performance of these alternatives, we systematically benchmarked 11 different molecular fingerprint encodings, each combined with 13 different similarity coefficients, using a large set of chemical-genetic interaction data from the yeast as a systematic proxy for biological activity.
View Article and Find Full Text PDFMomilactone B is a natural product with dual biological activities, including antimicrobial and allelopathic properties, and plays a major role in plant chemical defense against competitive plants and pathogens. The pharmacological effects of momilactone B on mammalian cells have also been reported. However, little is known about the molecular and cellular mechanisms underlying its broad bioactivity.
View Article and Find Full Text PDFTankyrases (TNKS/TNKS2) belong to the poly(ADP-ribose) polymerase family. Inhibition of their enzymatic activities attenuates the Wnt/β-catenin signaling, which plays an important role in cancer pathogenesis. We previously reported the discovery of RK-287107, a spiroindoline-based, highly selective, potent tankyrase inhibitor.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFAlthough yeasts are unicellular microorganisms that can live independently, they can also communicate with other cells, in order to adapt to the environment. Two yeast species, the budding yeast Saccharomyces cerevisiae and the fission yeast Schizosaccharomyces pombe, engage in various kinds of intraspecies cell-cell communication using peptides and chemical molecules that they produce, constituting a sort of 'language'. Cell-cell communication is a fundamental biological process, and its ultimate purpose is to promote survival by sexual reproduction and acquisition of nutrients from the environment.
View Article and Find Full Text PDFActa Pharmacol Sin
September 2019
Chemical genomics has been applied extensively to evaluate small molecules that modulate biological processes in Saccharomyces cerevisiae. Here, we use yeast as a surrogate system for studying compounds that are active against metazoan targets. Large-scale chemical-genetic profiling of thousands of synthetic and natural compounds from the Chinese National Compound Library identified those with high-confidence bioprocess target predictions.
View Article and Find Full Text PDF