Dynactin is a principal regulator of the minus-end directed microtubule motor dynein. The sidearm of dynactin is essential for binding to microtubules and regulation of dynein activity. Although our understanding of the structure of the dynactin backbone (Arp1 rod) has greatly improved recently, structural details of the sidearm subcomplex remain elusive.
View Article and Find Full Text PDFSingle-molecule fluorescence polarization technique has been utilized to detect structural changes in biomolecules and intermolecular interactions. Here we developed a single-molecule fluorescence polarization measurement system, named circular orientation fluorescence emitter imaging (COFEI), in which a ring pattern of an acquired fluorescent image (COFEI image) represents an orientation of a polarization and a polarization factor. Rotation and pattern change of the COFEI image allow us to find changes in the polarization by eye and further values of the parameters of a polarization are determined by simple image analysis with high accuracy.
View Article and Find Full Text PDFDynactin is a dynein-regulating protein that increases the processivity of dynein movement on microtubules. Recent studies have shown that a tripartite complex of dynein-dynactin-Bicaudal D2 is essential for highly processive movement. To elucidate the regulation of dynein motility by dynactin, we focused on two isoforms (A and B) of dynactin 1 (DCTN1), the largest subunit of dynactin that contains both microtubule- and dynein-binding domains.
View Article and Find Full Text PDFThe outer arm dynein (OAD) complex is the main propulsive force generator for ciliary/flagellar beating. In Chlamydomonas and Tetrahymena, the OAD complex comprises three heavy chains (α, β, and γ HCs) and >10 smaller subunits. Dynein light chain-1 (LC1) is an essential component of OAD.
View Article and Find Full Text PDFMicrotubule doublet (MTD) is the main skeleton of cilia/flagella. Many proteins, such as dyneins and radial spokes, bind to MTD, and generate or regulate force. While the structure of the reconstituted microtubule has been solved at atomic resolution, nature of the axonemal MTD is still unclear.
View Article and Find Full Text PDFOuter-arm dynein is the main engine providing the motive force in cilia. Using three-dimensional tracking microscopy, we found that contrary to previous reports Tetrahymena ciliary three-headed outer-arm dynein (αβγ) as well as proteolytically generated two-headed (βγ) and one-headed (α) subparticles showed clockwise rotation of each sliding microtubule around its longitudinal axis in microtubule corkscrewing assays. By measuring the rotational pitch as a function of ATP concentration, we also found that the microtubule corkscrewing pitch is independent of ATP concentration, except at low ATP concentrations where the pitch generated by both three-headed αβγ and one-headed α exhibited significantly longer pitch.
View Article and Find Full Text PDFCytoplasmic dynein is a two-headed microtubule-based motor responsible for diverse intracellular movements, including minus-end-directed transport of organelles. The motility of cargo transporters is regulated according to the presence or absence of cargo; however, it remains unclear how cytoplasmic dynein achieves such regulation. Here, using a recombinant and native dynein complex in vitro, we show that lone, single dynein molecules are in an autoinhibited state, in which the two motor heads are stacked together.
View Article and Find Full Text PDFDyneins are large microtubule-based motor complexes that power a range of cellular processes including the transport of organelles, as well as the beating of cilia and flagella. The motor domain is located within the dynein heavy chain and comprises an N-terminal mechanical linker element, a central ring of six AAA+ modules of which four bind or hydrolyze ATP, and a long stalk extending from the AAA+ring with a microtubule-binding domain (MTBD) at its tip. A crucial mechanism underlying the motile activity of cytoskeletal motor proteins is precise coupling between the ATPase and track-binding activities.
View Article and Find Full Text PDFTroponin, a Ca(2+)-dependent regulator of striated muscle contraction, has been characterized in vertebrates, protochordates (amphioxus and ascidian), and many invertebrate animals that are categorized in protostomes, but it has not been detected in echinoderms, such as sea urchin and sea cucumber, members of subphylum Eleutherozoa. In this study, we examined the muscle of a species of isocrinid sea lilies, a member of subphylum Pelmatozoa, that constitute the most basal group of extant echinoderms to clarify whether troponin is lacking from the early evolution of echinoderms. Native thin filaments were released from the muscle homogenates in a relaxing buffer containing ATP and EGTA, a Ca(2+)-chelator, and were collected by ultra-centrifugation.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2013
Intracellular transport is thought to be achieved by teams of motor proteins bound to a cargo. However, the coordination within a team remains poorly understood as a result of the experimental difficulty in controlling the number and composition of motors. Here, we developed an experimental system that links together defined numbers of motors with defined spacing on a DNA scaffold.
View Article and Find Full Text PDFCytoplasmic dynein and kinesin are two-headed microtubule motor proteins that move in opposite directions on microtubules. It is known that kinesin steps by a 'hand-over-hand' mechanism, but it is unclear by which mechanism dynein steps. Because dynein has a completely different structure from that of kinesin and its head is massive, it is suspected that dynein uses multiple protofilaments of microtubules for walking.
View Article and Find Full Text PDFCytoplasmic dynein is a microtubule (MT) motor protein comprising two classes: dynein-1 and dynein-2. We purified recombinant human dynein-1 and dynein-2 from HEK-293 cells by expressing the streptavidin-binding peptide-tagged human cytoplasmic dynein-1 and dynein-2 heavy chains (HCs), respectively. Electron microscopy of the purified molecules revealed a two-headed structure composed of characteristic dynein motor domains.
View Article and Find Full Text PDFLIS1 and NDEL1 are known to be essential for the activity of cytoplasmic dynein in living cells. We previously reported that LIS1 and NDEL1 directly regulated the motility of cytoplasmic dynein in an in vitro motility assay. LIS1 suppressed dynein motility and inhibited the translocation of microtubules (MTs), while NDEL1 dissociated dynein from MTs and restored dynein motility following suppression by LIS1.
View Article and Find Full Text PDFWe visualized the nucleotide-dependent behavior of single molecules of mammalian native cytoplasmic dynein using fragments of dynactin p150 with or without its N-terminal microtubule binding domain. The results indicate that the binding affinity of dynein for microtubules is high in AMP-PNP, middle in ADP or no nucleotide, and low in ADP.Pi conditions.
View Article and Find Full Text PDFThe active transport of proteins and organelles is critical for cellular organization and function in eukaryotic cells. A substantial portion of long-distance transport depends on the opposite polarity of the kinesin and dynein family molecular motors to move cargo along microtubules. It is increasingly clear that many cargo molecules are moved bi-directionally by both sets of motors; however, the regulatory mechanism that determines the directionality of transport remains unclear.
View Article and Find Full Text PDFFission yeast Pkl1 is a kinesin-14A family member that is known to be localized at the cellular spindle and is capable of hydrolyzing ATP. However, its motility has not been detected. Here, we show that Pkl1 is a slow, minus end-directed microtubule motor with a maximum velocity of 33+/-9 nm/s.
View Article and Find Full Text PDFLIS1 was first identified as a gene mutated in human classical lissencephaly sequence. LIS1 is required for dynein activity, but the underlying mechanism is poorly understood. Here, we demonstrate that LIS1 suppresses the motility of cytoplasmic dynein on microtubules (MTs), whereas NDEL1 releases the blocking effect of LIS1 on cytoplasmic dynein.
View Article and Find Full Text PDFConventional kinesin (Kinesin-1) is a microtubule-based molecular motor that supports intracellular vesicle/organelle transport in various eukaryotic cells. To arrange kinesin motors similarly to myosin motors on thick filaments in muscles, the motor domain of rat conventional kinesin (amino acid residues 1-430) fused to the C-terminal 829 amino acid residues of catchin (KHC430Cat) was bacterially expressed and attached to catchin filaments that can attach to and arrange myosin molecules in a bipolar manner on their surface. Unlike the case of myosin where actin filaments move toward the center much faster than in the opposite direction along the catchin filaments, microtubules moved at the same speed in both directions.
View Article and Find Full Text PDFDynein is a motor ATPase, and the C-terminal two-thirds of its heavy chain form a ring structure. One of protrudings from this ring structure is a stalk whose tip, the dynein stalk head (DSH), is thought to be the microtubule-binding domain. As a first step toward elucidating the functional mechanisms of DSH, we aimed at the NMR structural analysis of an isolated DSH from mouse cytoplasmic dynein.
View Article and Find Full Text PDFDrosophila Ncd, a kinesin-14A family member, is essential for meiosis and mitosis. Ncd is a minus-end-directed motor protein that has an ATP-independent microtubule binding site in the tail region, which enables it to act as a dynamic crosslinker of microtubules to assemble and maintain the spindle. Although a tailless Ncd has been shown to be nonprocessive, the role of the Ncd tail in single-molecule motility is unknown.
View Article and Find Full Text PDFNDEL1 is a binding partner of LIS1 that participates in the regulation of cytoplasmic dynein function and microtubule organization during mitotic cell division and neuronal migration. NDEL1 preferentially localizes to the centrosome and is a likely target for cell cycle-activated kinases, including CDK1. In particular, NDEL1 phosphorylation by CDK1 facilitates katanin p60 recruitment to the centrosome and triggers microtubule remodeling.
View Article and Find Full Text PDFStructural differences between dynein and kinesin suggest a unique molecular mechanism of dynein motility. Measuring the mechanical properties of a single molecule of dynein is crucial for revealing the mechanisms underlying its movement. We measured the step size and force produced by single molecules of active cytoplasmic dynein by using an optical trap and fluorescence imaging with a high temporal resolution.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2006
Dynactin is a hetero-oligomeric protein complex that has an important role in dynein-based intracellular transport. The expressed N-terminal fragments of dynactin p150 bound to microtubules in the ratio of one to one tubulin dimer, independent from the binding of dynein stalk head. Single molecule observation revealed that these fragments moved around on microtubules by Brownian motion.
View Article and Find Full Text PDF