We observed the instability of a few-nanometer-thick water film encapsulated inside a graphene nanoscroll using transmission electron microscopy. The film, that was left after recession of a meniscus, formed ripples along the length of the nanoscroll with a distance only 20%-44% of that predicted by the classical Plateau-Rayleigh instability theory. The results were explained by a theoretical analysis that incorporates the effect of the van der Waals interactions between the water film and the graphene layers.
View Article and Find Full Text PDFProbing the dynamics of nanobubbles is essential to understand their longevity and behavior. Importantly, such an observation requires tools and techniques having high temporal resolutions to capture the intrinsic characteristics of the nanobubbles. In this work, we have used the liquid-phase electron microscopy (LPEM) technique to gain insights into nanobubbles' behavior and their interfacial dynamics.
View Article and Find Full Text PDFNanobubbles have attracted great interest in recent times because of their application in water treatment, surface cleaning, and targeted drug delivery, yet the challenge remains to gain thorough understanding of their unique behavior and dynamics for their utilization in numerous potential applications. In this work, we have used a liquid-phase electron microscopy technique to gain insights into the quasistatic merging of surface nanobubbles. The electron beam environment was controlled in order to suppress any new nucleation and slow down the merging process.
View Article and Find Full Text PDFGraphene liquid cells provide the highest possible spatial resolution for liquid-phase transmission electron microscopy. Here, in graphene liquid cells (GLCs), we studied the nanoscale dynamics of bubbles induced by controllable damage in graphene. The extent of damage depended on the electron dose rate and the presence of bubbles in the cell.
View Article and Find Full Text PDFWater confined in carbon nanotubes (CNTs) can exhibit distinctly different behaviors from the bulk. We report transmission electron microscopy (TEM) observation of water phases inside hydrophobic cup-stacked CNTs exposed to high vacuum. Unexpectedly, we observed stable water morphologies beyond surface-tension dominance, including nanometer thin free water films, complex water-bubble structures, and zigzag-shaped liquid-gas interface.
View Article and Find Full Text PDFFluids confined in a nanoscale space behave differently than in the bulk due to strong interactions between fluid molecules and solid atoms. Here, we observed water confined inside "open" hydrophilized carbon nanotubes (CNT), with diameter of tens of nanometers, using transmission electron microscopy (TEM). A 1-7 nm water film adhering to most of the inner wall surface was observed and remained stable in the high vacuum (order of 10 Pa) of the TEM.
View Article and Find Full Text PDF