Publications by authors named "Yoko Kaneko"

Background: The objectives of this phase two study are to investigate the efficacy of two starting doses of 8.4 g and 16.8 g and evaluate the long-term safety of patiromer in Japanese patients with hyperkalemia.

View Article and Find Full Text PDF

The hypothalamus is comprised of heterogenous cell populations and includes highly complex neural circuits that regulate the autonomic nerve system. Its dysfunction therefore results in severe endocrine disorders. Although recent experiments have been conducted for in vitro organogenesis of hypothalamic neurons from embryonic stem (ES) or induced pluripotent stem (iPS) cells, whether these stem cell-derived hypothalamic neurons can be useful for regenerative medicine remains unclear.

View Article and Find Full Text PDF

Hypothalamic melanin-concentrating hormone (MCH) neurons are important regulators of multiple physiological processes, such as sleep, feeding, and memory. Despite the increasing interest in their neuronal functions, the molecular mechanism underlying MCH neuron development remains poorly understood. We report that a three-dimensional culture of mouse embryonic stem cells (mESCs) can generate hypothalamic-like tissues containing MCH-positive neurons, which reproduce morphologic maturation, neuronal connectivity, and neuropeptide/neurotransmitter phenotype of native MCH neurons.

View Article and Find Full Text PDF

B cell-targeted therapies have evolved as established therapies for systemic lupus erythematosus (SLE); however, existing approaches still do not thoroughly satisfy clinical requirements due to limited efficacy against memory B cells, autoantibody-producing plasmablasts and disease heterogeneity. To provide a new treatment option for SLE, we created a novel anti-Igβ antibody with enhanced affinity for Fc gamma receptor (FcγR) IIB called ASP2713. ASP2713 cross-reacted with both human and cynomolgus monkey Igβ and showed increased binding affinity for human and monkey FcγRIIB compared to native human IgG1.

View Article and Find Full Text PDF

5'-Nucleotidase domain-containing protein 2 (NT5DC2) has been revealed by genome-wide association studies (GWAS) as a gene implicated in neuropsychiatric disorders related to the abnormality of dopamine (DA) activity in the brain. Based on its amino acid sequence, NT5DC2 is assumed to be a member of the family of haloacid dehalogenase-type phosphatases; although there is no information about its function and structural conformation. We recently reported that NT5DC2 binds to tyrosine hydroxylase (TH) and that the down-regulation of NT5DC2 tended to increase DA synthesis.

View Article and Find Full Text PDF

Phosphoinositide 3-kinases generate lipid-based second messengers that control an array of intracellular signaling pathways. In particular, phosphoinositide 3-kinases delta (PI3Kδ) is expressed primarily in hematopoietic cells and plays an important role in B-cell development and function. B cells play a critical role in autoimmune diseases by producing autoantibodies.

View Article and Find Full Text PDF

Long-term graft survival after organ transplantation is difficult to achieve because of the development of chronic rejection. One cause of chronic rejection arises from antibody-mediated rejection (AMR), which is dependent on the production of donor-specific antibodies (DSA). Current immunosuppression in organ transplantation is effective in preventing acute T cell-mediated rejection, but the risk of DSA production and graft loss due to AMR remains unchanged.

View Article and Find Full Text PDF

Tyrosine hydroxylase (TH), which catalyzes the conversion of l-tyrosine to l-DOPA, is the rate-limiting enzyme in the biosynthesis of catecholamines. It is well known that both α-synuclein and 14-3-3 protein family members bind to the TH molecule and regulate phosphorylation of its N-terminus by kinases to control the catalytic activity. In this present study we investigated whether other proteins aside from these 2 proteins might also bind to TH molecules.

View Article and Find Full Text PDF

Introduction: We describe a hemodialysis patient who developed subclavian steal syndrome via an arteriovenous fistula after percutaneous transluminal angioplasty.

Case Description: A 55-year-old female with end-stage renal failure due to polycystic kidney disease had been treated with hemodialysis for 10 years. Because of an autologous arteriovenous fistula stenosis, percutaneous transluminal angioplasty was performed.

View Article and Find Full Text PDF

B cell-mediated antibodies play a critical role in protecting the body from infections; however, excessive antibody production is involved in the pathogenesis of autoimmune diseases and transplanted organ rejection. Regulation of antibody production is therefore crucial for overcoming these complications. Phosphatidylinositol-3-kinase p110δ (PI3Kδ), a member of the family of PI3K lipid kinases, is a key mediator of B cell activation and proliferation, with a small molecule PI3Kδ inhibitor having been approved for the treatment of B cell lymphoma.

View Article and Find Full Text PDF

Background: Janus kinase (JAK) inhibitors are thought to be promising candidates to aid renal transplantation. However, the effectiveness of JAK inhibitors against features of chronic rejection, including interstitial fibrosis/tubular atrophy (IF/TA) and glomerulosclerosis, has not been elucidated. Here, we investigated the effect of AS2553627, a novel JAK inhibitor, on the development of chronic rejection in rat renal transplantation.

View Article and Find Full Text PDF

Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis, and its stability is a fundamental factor to maintain the level of the catecholamines in cells. However, the intracellular stability of TH determined by the degradation remains unknown; although the TH molecule phosphorylated at its Ser19 was observed in the nucleus, and the phosphorylation suspected to trigger its proteasome-mediated degradation. Computer-assisted analysis using the cNLS Mapper program predicted that two sequences of nuclear localization signals (NLS) exist in the N-terminus of TH molecule containing the phosphorylation sites Ser19, Ser31, and Ser40 (Pro-Arg and Lys-Ile): the NLS scores indicated that TH could become localized in both nucleus and cytoplasm.

View Article and Find Full Text PDF

Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis, and its stability is a fundamental factor to maintain the level of the catecholamines in cells. However, the intracellular stability determined by the degradation pathway remains unknown. In this study, we investigated the mechanism by which phosphorylation of TH affected the proteasome pathway.

View Article and Find Full Text PDF

We previously showed that aripiprazole increases intracellular NADPH and glucose-6-phosphate dehydrogenase mRNA in PC12 cells. Aripiprazole presumably activates a system that concurrently detoxifies reactive oxygen species and replenishes NADPH. Nrf2, a master transcriptional regulator of redox homeostasis genes, also activates the pentose phosphate pathway, including NADPH production.

View Article and Find Full Text PDF

We previously reported that an optimal dose of lipopolysaccharide (LPS) markedly extends the lifespan of murine primary-cultured microglia by suppressing cell death pathways. In this study, we investigated the effects of LPS pretreatment on UV light-induced apoptosis of cells from the microglial cell line BV-2. More than half of BV-2 cells were apoptotic, and procaspase-3 was cleaved into its active form at 3 h of UV irradiation.

View Article and Find Full Text PDF

Tyrosine hydroxylase (TH), the rate-limiting enzyme in the biosynthesis of catecholamines, is a key protein involved in the pathogenesis of neurodegenerative diseases such as Parkinson's disease. Elucidation of the mechanisms regulating the synthesis, degradation, and activity of TH should be a first target in order to understand the role of this enzyme in pathogenesis. Recently, several reports suggest that the ubiquitin-proteasome pathway is a prerequisite for the degradation of TH and that the N-terminal part of TH plays a critical role in the degradation.

View Article and Find Full Text PDF

In aripiprazole-treated PC12 cells, we previously showed that the mitochondrial membrane potential (Δψm) was rather increased in spite of lowered cytochrome c oxidase activity. To address these inconsistent results, we focused the NADPH generation by glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway (PPP), to titrate reactive oxygen species (ROS) that results in the Δψm maintenance. G6PD may be also involved in another inconsistent result of lowered intracellular lactate level in aripiprazole-treated PC12 cells, because PPP competes glucose-6-phosphate with the glycolytic pathway, resulting in the downregulation of glycolysis.

View Article and Find Full Text PDF

To examine the efficacy of long-term administration of lanthanum carbonate, changes in serum Ca, phosphate, whole parathyroid hormone (wPTH), and ALP were examined in 40 patients who were able to tolerate dosage of lanthanum carbonate over a continuous period of 24 months. Concurrently, concomitant administration of other phosphate binders, cinacalcet, vitamin D, etc., was also examined.

View Article and Find Full Text PDF

Postmortem brain biochemistry has revealed that the main symptom of movement disorder in Parkinson's disease (PD) is caused by a deficiency in dopamine (DA) at the nerve terminals of degenerating nigro-striatal DA neurons in the striatum. Since tyrosine hydroxylase (TH) is the rate-limiting enzyme for the biosynthesis of DA, TH may play an important role in the disease process of PD. DA regulated by TH activity is thought to interact with α-synuclein protein, which results in intracellular aggregates called Lewy bodies and causes apoptotic cell death during the aging process.

View Article and Find Full Text PDF

1. Previously, we reported that an optimal dose of lipopolysaccharide (LPS) markedly extends the life span of mouse primary-cultured microglia by suppressing apoptotic and autophagic cell death pathways. The aim of the present study was to assess how these cells protect themselves against reactive oxygen species (ROS) generated by LPS treatment.

View Article and Find Full Text PDF

Aripiprazole is the only atypical antipsychotic drug known to cause the phosphorylation of AMP-activated protein kinase (AMPK) in PC12 cells. However, the molecular mechanisms underlying this phosphorylation in aripiprazole-treated PC12 cells have not yet been clarified. Here, using PC12 cells, we show that these cells incubated for 24 h with aripiprazole at 50 μM and 25 mM glucose underwent a decrease in their NAD⁺/NADH ratio.

View Article and Find Full Text PDF

Background: Activated microglia secrete inflammatory cytokines and may play roles in the progression of neurodegenerative diseases. However, the mechanism underlying microglial activation remains unclear.

Objective: Our aim was to examine the regulation of activated microglia through their cell death and survival pathways.

View Article and Find Full Text PDF

This review summarizes the effects of neuroinflammatory stress on the subventricular zone (SVZ), where new neurons are constitutively produced in the adult brain, especially focusing on the relation with Parkinson's disease (PD), because the SVZ is under the control of dopaminergic afferents from the substantia nigra (SN). In Lewy bodies-positive-PD, microglia is known to phagocytoze aggregated α-synuclein, resulting in the release of inflammatory cytokines. The neurogenesis in the SVZ should be affected in PD brain by the neuroinflammatory process.

View Article and Find Full Text PDF

Tyrosine hydroxylase (TH) is the rate-limiting enzyme in catecholamine biosynthesis, and its N-terminus plays a critical role in the intracellular stability of the enzyme. In the present study, we investigated the mechanism by which the N-terminal region of TH affects this stability. TH molecules phosphorylated at their Ser31 and Ser40 were localized predominantly in the cytoplasm of PC12D cells.

View Article and Find Full Text PDF

By converting changes in intracellular energy status to changes in cell membrane polarization, ATP-sensitive K(+) (K(ATP)) channels in hypothalamic appetite-regulating neurons play a critical role in linking neuronal electrochemical function, metabolic and energy status, and feeding behavior. Most atypical antipsychotics (AAPs) increase the appetite of patients with schizophrenia and thus cause obesity. This study aimed to explain the mechanism underlying AAP-induced appetite stimulation, based on the fact that the efficiency of fatty acid uptake into mitochondria generating ATP through β-oxidation is determined by the rate of fatty acid synthesis.

View Article and Find Full Text PDF