Publications by authors named "Yoji Osako"

Pain experience is known to be modified by social factors, but the brain mechanisms remain unspecified. We recently established an animal model of social stress-induced hyperalgesia (SSIH) using a socially monogamous rodent, the prairie vole, in which males separated from their female partners (loss males) became anxious and displayed exacerbated inflammatory pain behaviors compared to males with partners (paired males). In the present study, to explore the neural pathways involved in SSIH, a difference in neuronal activation in pain-related brain regions, or "pain matrix", during inflammatory pain between paired and loss males was detected using Fos immunoreactivity (Fos-ir).

View Article and Find Full Text PDF

Social relationships among spouses, family members, and friends are known to affect physical and mental health. In particular, long-lasting bonds between socio-sexual partners have profound effects on cognitive, social, emotional, and physical well-being. We have previously reported that pair bonding in monogamous prairie voles (Microtus ochrogaster) is prevented by a single prolonged stress (SPS) paradigm, which causes behavioral and endocrine symptoms resembling post-traumatic stress disorder (PTSD) patients in rats (Arai et al.

View Article and Find Full Text PDF

Aims: Post-weaning social deprivation is known to induce behavioral and neuronal alterations associated with anxiety and stress responses in adulthood. However, the effects of social deprivation on the development of sociability are poorly understood. We examined the effects of social deprivation on subsequent social behaviors and oxytocinergic activity using socially-isolated (approximately two months post-weaning) male and female rats.

View Article and Find Full Text PDF

Objective: Pain is modulated by psychosocial factors, and social stress-induced hyperalgesia is a common clinical symptom in pain disorders. To provide a new animal model for studying social modulation of pain, we examined pain behaviors in monogamous prairie voles experiencing partner loss.

Methods: After cohabitation with novel females, males (n = 79) were divided into two groups on the basis of preference test scores.

View Article and Find Full Text PDF

Traumatic events such as natural disasters, violent crimes, tragic accidents, and war, can have devastating impacts on social relationships, including marital partnerships. We developed a single prolonged stress (SPS) paradigm, which consisted of restraint, forced swimming, and ether anesthesia, to establish an animal model relevant to post-traumatic stress disorder. We applied a SPS paradigm to a monogamous rodent, the prairie vole (Microtus ochrogaster) in order to determine whether a traumatic event affects the establishment of pair bonds.

View Article and Find Full Text PDF

Motopsin (prss12), a mosaic serine protease secreted by neuronal cells, is believed to be important for cognitive function, as the loss of its function causes severe nonsyndromic mental retardation. To understand the molecular role of motopsin, we identified the integral membrane protein 2a (Itm2a) as a motopsin-interacting protein using a yeast two-hybrid system. A pull-down assay showed that the BRICHOS domain of Itm2a was essential for this interaction.

View Article and Find Full Text PDF

A serine protease, motopsin (prss12), plays a significant role in cognitive function and the development of the brain, since the loss of motopsin function causes severe mental retardation in humans and enhances social behavior in mice. Motopsin is activity-dependently secreted from neuronal cells, is captured around the synaptic cleft, and cleaves a proteoglycan, agrin. The multi-domain structure of motopsin, consisting of a signal peptide, a proline-rich domain, a kringle domain, three scavenger receptor cysteine-rich domains, and a protease domain at the C-terminal, suggests the interaction with other molecules through these domains.

View Article and Find Full Text PDF

Motopsin is a mosaic serine protease secreted from neuronal cells in various brain regions, including the hippocampus. The loss of motopsin function causes nonsyndromic mental retardation in humans and impairs long-term memory formation in Drosophila. To understand motopsin's function in the mammalian brain, motopsin knockout (KO) mice were generated.

View Article and Find Full Text PDF

Long-term immobilization by casting can occasionally cause pathologic pain states in the immobilized side. The underlying neurophysiological mechanisms of immobilization-related pain are not well understood. For this reason, we specifically examined changes of calcitonin gene-related peptide (CGRP) expression in the dorsal root ganglion (DRG), spinal dorsal horn and posterior nuclei (cuneate nuclei) in a long-term immobilization model following casting for 5 weeks.

View Article and Find Full Text PDF

Motopsin (PRSS12) is a mosaic protease expressed in the central nervous system. Truncation of the human motopsin gene causes nonsyndromic mental retardation. Understanding the enzymatic properties and localization of motopsin protein in the central nervous system will help identify the molecular mechanism by which the loss of motopsin function causes mental retardation.

View Article and Find Full Text PDF