Purpose: Bile acids (BAs) have been shown to contribute to glucose and energy homeostasis. We have recently reported that miglitol, an alpha-glucosidase inhibitor, increases fecal BA excretion and ameliorate insulin resistance and obesity in mice. The aim of this study was to clarify the mechanisms by which miglitol affects BA metabolism.
View Article and Find Full Text PDFType 2 diabetes and dyslipidemia are diseases that collectively increase the risk of patients developing cardiovascular complications. Several incretin-based drugs are reported to improve lipid metabolism, and one of these medications, anagliptin, is a dipeptidyl peptidase-4 (DPP-4) inhibitor that has been shown to decrease serum triglyceride and low-density lipoproteins cholesterol. This study aimed to conduct an investigation into the effects of anagliptin on serum lipid profiles.
View Article and Find Full Text PDFAims/introduction: A high-carbohydrate diet is known to increase insulin secretion and induce obesity. However, whether or not a high-carbohydrate diet affects β-cell mass (BCM) has been little investigated.
Materials And Methods: Both wild-type (WT) mice and adenosine triphosphate-sensitive potassium channel-deficient (Kir6.
Both high-fat (HFD) and high-carbohydrate (ST) diets are known to induce weight gain. Glucose-dependent insulinotropic polypeptide (GIP) is secreted mainly from intestinal K cells upon stimuli by nutrients such as fat and glucose, and it potentiates glucose-induced insulin secretion. GIP is well known to contribute to HFD-induced obesity.
View Article and Find Full Text PDFExcess carbohydrate intake causes obesity in humans. On the other hand, acute administration of fructose, glucose or sucrose in experimental animals has been shown to increase the plasma concentration of anti-obesity hormones such as glucagon-like peptide 1 (GLP-1) and Fibroblast growth factor 21 (FGF21), which contribute to reducing body weight. However, the secretion and action of GLP-1 and FGF21 in mice chronically fed a high-sucrose diet has not been investigated.
View Article and Find Full Text PDFClozapine, a second-generation antipsychotic (SGA), is a cause of side effects related to metabolic syndrome. The participation of serotonin 5-HT and histamine H receptors in the central nervous system has been reported as a mechanism of the weight gain caused by clozapine. In the present study, we investigated the direct pharmacological action of clozapine on the 3T3-L1 adipocytes and compared it to that of blonanserin, an SGA with low affinity for both receptors.
View Article and Find Full Text PDFS100 calcium-binding protein B (S100B), a multifunctional macromolecule mainly expressed in nerve tissues and adipocytes, has been suggested to contribute to the pathogenesis of obesity. To clarify the role of S100B in insulin action and glucose metabolism in peripheral tissues, we investigated the effect of S100B on glycolysis in myoblast and myotube cells. Rat myoblast L6 cells were treated with recombinant mouse S100B to examine glucose consumption, lactate production, glycogen accumulation, glycolytic metabolites and enzyme activity, insulin signaling, and poly(ADP-ribosyl)ation of glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
View Article and Find Full Text PDFAims: Leptin plays an important role in the pathogenesis of obesity and diabetes, yet the regulatory mechanisms of this hormone have not been fully elucidated. In this study, we aimed to clarify the roles of insulin and glucose in leptin secretion and mRNA production using inhibitors of insulin signal transduction in adipocytes cultured under glucose-free or normal conditions.
Methods: Differentiated 3T3-L1 adipocytes were stimulated with insulin in combination with inhibitors for phosphoinositide 3-kinase (PI3K), Akt, and phosphodiesterase 3B (PDE3B), as well as epinephrine and a cyclic AMP (cAMP) analog under glucose-free or normal conditions.
Aims/hypothesis: The action of incretin hormones including glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1) is potentiated in animal models defective in glucagon action. It has been reported that such animal models maintain normoglycaemia under streptozotocin (STZ)-induced beta cell damage. However, the role of GIP in regulation of glucose metabolism under a combination of glucagon deficiency and STZ-induced beta cell damage has not been fully explored.
View Article and Find Full Text PDFObjective: Many studies have reported that stem cell transplantation promotes propagation and protection of pancreatic β-cells in streptozotocin (STZ)-induced diabetic mice without the differentiation of transplanted cells into pancreatic β-cells, suggesting that the improvement is due to a paracrine effect of the transplanted cells. We investigated the effects of factors secreted by dental pulp stem cells from human exfoliated deciduous teeth (SHED) on β-cell function and survival.
Research Design And Methods: Conditioned medium from SHED (SHED-CM) was collected 48 h after culturing in serum-free Dulbecco's modified Eagle's medium (DMEM).
Adenosine triphosphate-sensitive K(+) (KATP) channels play an essential role in glucose-induced insulin secretion from pancreatic β-cells. It was recently reported that the KATP channel is also found in the enteroendocrine K-cells and L-cells that secrete glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1), respectively. In the present study, we investigated the involvement of the KATP channel in fructose-induced GIP, GLP-1 and insulin secretion in mice.
View Article and Find Full Text PDFBiochem Biophys Res Commun
July 2015
Compared with other cancers, diabetes mellitus is more closely associated with hepatocellular carcinoma (HCC). However, whether hyperglycemia is associated with hepatic carcinogenesis remains uncertain. In this study, we investigate the effect of hyperglycemia on HCC development.
View Article and Find Full Text PDFAims/introduction: Recent studies have shown that cell transplantation therapies, such as endothelial precursor cells, bone marrow-derived mononuclear cells (BM-MNCs) and mesenchymal stem cells, are effective on diabetic polyneuropathy through ameliorating impaired nerve blood flow in diabetic rats. Here, we investigated the effects of BM-MNCs transplantation in diabetic polyneuropathy using BM-MNCs derived from adult (16-week-old) diabetic (AD), adult non-diabetic (AN) or young (8-week-old) non-diabetic (YN) rats.
Materials And Methods: BM-MNCs of AD and AN were isolated after an 8-week diabetes duration.
Recent studies have implicated epigenetics in the pathophysiology of diabetes. Furthermore, DNA methylation, which irreversibly deactivates gene transcription, of the insulin promoter, particularly the cAMP response element, is increased in diabetes patients. However, the underlying mechanism remains unclear.
View Article and Find Full Text PDFInteraction between adipocytes and macrophages has been suggested to play a central role in the pathogenesis of obesity. Ceramide, a sphingolipid de novo synthesized from palmitate, is known to stimulate pro-inflammatory cytokine secretion from multiple types of cells. To clarify whether de novo synthesized ceramide contributes to cytokine dysregulation in adipocytes and macrophages, we observed cytokine secretion in mature 3T3-L1 adipocytes (L1) and RAW264.
View Article and Find Full Text PDFAims/hypothesis: Although the initial healing stage involves a re-epithelialization in humans, diabetic foot ulceration (DFU) has been investigated using rodent models with wounds on the thigh skin, in which a wound contraction is initiated. In this study, we established a rodent model of DFU on the plantar skin and evaluated the therapeutic efficacy of bone-marrow-derived mesenchymal stem cells (BM-MSCs) in this model.
Methods: The wounds made on the hind paws or thighs of streptozotocin induced diabetic or control rats were treated with BM-MSCs.
Glucose-dependent insulinotropic polypeptide (GIP), a gut hormone secreted from intestinal K-cells, potentiates insulin secretion. Both K-cells and pancreatic β-cells are glucose-responsive and equipped with a similar glucose-sensing apparatus that includes glucokinase and an ATP-sensitive K(+) (KATP) channel comprising KIR6.2 and sulfonylurea receptor 1.
View Article and Find Full Text PDFBackground: Although pathological involvements of diabetic polyneuropathy (DPN) have been reported, no dependable treatment of DPN has been achieved. Recent studies have shown that mesenchymal stem cells (MSCs) ameliorate DPN. Here we demonstrate a differentiation of induced pluripotent stem cells (iPSCs) into MSC-like cells and investigate the therapeutic potential of the MSC-like cell transplantation on DPN.
View Article and Find Full Text PDFJ Neural Transm (Vienna)
January 2014
In aripiprazole-treated PC12 cells, we previously showed that the mitochondrial membrane potential (Δψm) was rather increased in spite of lowered cytochrome c oxidase activity. To address these inconsistent results, we focused the NADPH generation by glucose-6-phosphate dehydrogenase (G6PD), a rate-limiting enzyme of the pentose phosphate pathway (PPP), to titrate reactive oxygen species (ROS) that results in the Δψm maintenance. G6PD may be also involved in another inconsistent result of lowered intracellular lactate level in aripiprazole-treated PC12 cells, because PPP competes glucose-6-phosphate with the glycolytic pathway, resulting in the downregulation of glycolysis.
View Article and Find Full Text PDFObesity (Silver Spring)
February 2014
Objective: The S100 calcium binding protein B (S100B) implicated in brain inflammation acts via the receptor of advanced glycation end products (RAGE) and is also secreted from adipocytes. We investigated the role of S100B in the interaction between adipocytes and macrophages using a cell-culture model.
Design And Methods: RAW264.
Objective: Alpha-glucosidase inhibitors (α-GIs) show various anti-diabetic or anti-obesity effects in addition to the suppression of postprandial hyperglycemia. Based on recent observations that bile acids (BAs) are involved in glucose and energy homeostasis, we examined the ability of miglitol, an α-GI, to influence BA metabolism and ameliorate insulin resistance and obesity.
Materials/methods: NSY mice, representing an obese type 2 diabetic model, were fed with a high-fat diet and treated with miglitol for 4 or 12 weeks.
Unlabelled: Aims/Introduction: Excessive intake of sucrose can cause severe health issues, such as diabetes mellitus. In animal studies, consumption of a high-sucrose diet (SUC) has been shown to cause obesity, insulin resistance and glucose intolerance. However, several in vivo experiments have been carried out using diets with much higher sucrose contents (50-70% of the total calories) than are typically ingested by humans.
View Article and Find Full Text PDF