Sphingosine 1-phosphate receptor 1 (S1PR1) is a G protein-coupled receptor essential for vascular development and postnatal vascular homeostasis. When exposed to sphingosine 1-phosphate (S1P) in the blood of ∼1 μM, S1PR1 in endothelial cells retains cell-surface localization, while lymphocyte S1PR1 shows almost complete internalization, suggesting the cell-surface retention of S1PR1 is endothelial cell specific. To identify regulating factors that function to retain S1PR1 on the endothelial cell surface, here we utilized an enzyme-catalyzed proximity labeling technique followed by proteomic analyses.
View Article and Find Full Text PDFSphingosine 1-phosphate (S1P) is one of the lipid mediators involved in diverse physiological functions. S1P circulates in blood and lymph bound to carrier proteins. Three S1P carrier proteins have been reported, albumin, apolipoprotein M (ApoM) and apolipoprotein A4 (ApoA4).
View Article and Find Full Text PDFIntratumoral hypoxia is associated with tumor progression and therapeutic resistance. The VHL tumor suppressor gene was identified in 1993, and later studies revealed that the gene product pVHL interacts with other proteins to form the VBC complex. The VBC complex functions as an E3 ubiquitin ligase and regulates the abundance of the α-subunit of the transcription factor hypoxia-inducible factor (HIF).
View Article and Find Full Text PDFGDE4 and GDE7 are membrane-bound enzymes that exhibit lysophospholipase D activities. We found that GDE7 produced not only lysophosphatidic acid (LPA) but also cyclic phosphatidic acid (cPA) from lysophospholipids by a transphosphatidylation reaction. In contrast, GDE4 produced only LPA.
View Article and Find Full Text PDFHypoxic responses are mainly regulated by heterodimeric transcription factor HIF, composed of unstable α-subunit (HIFα) and stable β-subunit (HIF1β/ARNT). Protein stability of HIFα depends on the hydroxylation status of its specific proline residue(s). Prolyl hydroxylation of HIFα is regulated by iron- and 2-oxoglutarate (2-OG)-dependent dioxygenase PHDs, whose enzyme activities are oxygen-dependent.
View Article and Find Full Text PDFThe kidneys consume a large amount of energy to regulate volume status and blood pressure and to excrete uremic toxins. The identification of factors that cause energy mismatch in the setting of chronic kidney disease (CKD) and the development of interventions aimed at improving this mismatch are key research imperatives. Although the critical cellular energy sensor 5'-adenosine monophosphate (AMP)-activated protein kinase (AMPK) is known to be inactivated in CKD, the mechanism of AMPK dysregulation is unknown.
View Article and Find Full Text PDFMetformin is one of the most widely used therapeutics for type 2 diabetes mellitus and also has anticancer and antiaging properties. However, it is known to induce metformin-associated lactic acidosis (MALA), a severe medical condition with poor prognosis, especially in individuals with renal dysfunction. Inhibition of prolyl hydroxylase (PHD) is known to activate the transcription factor hypoxia-inducible factor (HIF) that increases lactate efflux as a result of enhanced glycolysis, but it also enhances gluconeogenesis from lactate in the liver that contributes to reducing circulating lactate levels.
View Article and Find Full Text PDFThe involvement of tissue ischemia in obesity-induced kidney injury remains to be elucidated. Compared with low fat diet (LFD)-mice, high fat diet (HFD)-fed mice became obese with tubular enlargement, glomerulomegaly and peritubular capillary rarefaction, and exhibited both tubular and glomerular damages. In HFD-fed mice, despite the increase in renal pimonidazole-positive areas, the expressions of the hypoxia-responsive genes such as Prolyl-hydroxylase PHD2, a dominant oxygen sensor, and VEGFA were unchanged indicating impaired hypoxic response.
View Article and Find Full Text PDFTo identify the molecules involved in epithelial to mesenchymal transition (EMT) in urothelial carcinoma (UC) after acquisition of platinum resistance, here we examined the changes in global gene expression before and after platinum treatment. Four invasive UC cell lines, T24, 5637, and their corresponding sublines T24PR and 5637PR with acquired platinum resistance, were assessed by microarray, and the ubiquitin E3 ligase FBXO32 was newly identified as a negative regulator of EMT in UC tumors after acquisition of platinum resistance. In vitro and in vivo studies showed an intimate relationship between FBXO32 expression and EMT, demonstrating that FBXO32 dysregulation in T24PR cells results in elevated expression of the mesenchymal molecules SNAIL and vimentin and decreased expression of the epithelial molecule E-cadherin.
View Article and Find Full Text PDFLoss of prolyl hydroxylase 2 (PHD2) activates the hypoxia-inducible factor-dependent hypoxic response, including anaerobic glycolysis, which causes large amounts of lactate to be released from cells into the circulation. We found that Phd2-null mouse embryonic fibroblasts (MEFs) produced more lactate than wild-type MEFs, as expected, whereas systemic inactivation of PHD2 in mice did not cause hyperlacticacidemia. This unexpected observation led us to hypothesize that the hypoxic response activated in the liver enhances the Cori cycle, a lactate-glucose carbon recycling system between muscle and liver, and thereby decreases circulating lactate.
View Article and Find Full Text PDFBiochem Biophys Res Commun
August 2014
Cells are frequently exposed to hypoxia in physiological and pathophysiological conditions in organisms. Control of energy metabolism is one of the critical functions of the hypoxic response. Hypoxia-Inducible Factor (HIF) is a central transcription factor that regulates the hypoxic response.
View Article and Find Full Text PDFUnlabelled: Activation of aerobic glycolysis in cancer cells is well known as the Warburg effect, although its relation to cell- cycle progression remains unknown. In this study, human colon cancer cells were labeled with a cell-cycle phase-dependent fluorescent marker Fucci to distinguish cells in G1-phase and those in S + G2/M phases. Fucci-labeled cells served as splenic xenograft transplants in super-immunodeficient NOG mice and exhibited multiple metastases in the livers, frozen sections of which were analyzed by semiquantitative microscopic imaging mass spectrometry.
View Article and Find Full Text PDFAberrations in epigenetic processes, such as histone methylation, can cause cancer. Retinoblastoma binding protein 2 (RBP2; also called JARID1A or KDM5A) can demethylate tri- and dimethylated lysine 4 in histone H3, which are epigenetic marks for transcriptionally active chromatin, whereas the multiple endocrine neoplasia type 1 (MEN1) tumor suppressor promotes H3K4 methylation. Previous studies suggested that inhibition of RBP2 contributed to tumor suppression by the retinoblastoma protein (pRB).
View Article and Find Full Text PDFBackground: Ischemic cardiomyopathy is the major cause of heart failure and a significant cause of morbidity and mortality. The degree of left ventricular dysfunction in this setting is often out of proportion to the amount of overtly infarcted tissue, and how decreased delivery of oxygen and nutrients leads to impaired contractility remains incompletely understood. The Prolyl Hydroxylase Domain-Containing Protein (PHD) prolyl hydroxylases are oxygen-sensitive enzymes that transduce changes in oxygen availability into changes in the stability of the hypoxia-inducible factor transcription factor, a master regulator of genes that promote survival in a low-oxygen environment.
View Article and Find Full Text PDFThe kidney controls erythropoietin production in adults, and the anemia that can accompany renal failure is a major medical problem. The liver controls erythropoietin production during fetal life but is silenced shortly after birth. Erythropoietin transcription is controlled by hypoxia-inducible factor (HIF), which is inhibited by three prolyl hydroxylases (PHD1, PHD2, and PHD3).
View Article and Find Full Text PDFHypoxia-inducible factor (HIF), consisting of a labile alpha subunit and a stable beta subunit, is a master regulator of hypoxia-responsive mRNAs. HIF alpha undergoes oxygen-dependent prolyl hydroxylation, which marks it for polyubiquitination by a complex containing the von Hippel-Lindau protein (pVHL). Among the three Phd family members, Phd2 appears to be the primary HIF prolyl hydroxylase.
View Article and Find Full Text PDFBackground: Sudden cardiac arrest (CA) is one of the leading causes of death worldwide. We sought to evaluate the impact of hydrogen sulfide (H(2)S) on the outcome after CA and cardiopulmonary resuscitation (CPR) in mouse.
Methods And Results: Mice were subjected to 8 minutes of normothermic CA and resuscitated with chest compression and mechanical ventilation.
Germline von Hippel-Lindau tumour suppressor gene (VHL) mutations cause renal cell carcinomas, haemangioblastomas and phaeochromocytomas in humans. Mutations in VHL also occur in sporadic renal cell carcinomas. The protein encoded by VHL, VHL, is part of the ubiquitin ligase that downregulates the heterodimeric transcription factor Hif under well-oxygenated conditions.
View Article and Find Full Text PDFPharmacologic activation of the heterodimeric HIF transcription factor appears promising as a strategy to treat diseases, such as anemia, myocardial infarction, and stroke, in which tissue hypoxia is a prominent feature. HIF accumulation is normally linked to oxygen availability because an oxygen-dependent posttranslational modification (prolyl hydroxylation) marks the HIFalpha subunit for polyubiquitination and destruction. Three enzymes (PHD1, PHD2, and PHD3) capable of catalyzing this reaction have been identified, although PHD2 (also called Egln1) appears to be the primary HIF prolyl hydroxylase in cell culture experiments.
View Article and Find Full Text PDFThe VHL tumor suppressor protein (pVHL) is part of an E3 ubiquitin ligase that targets HIF for destruction. pVHL-defective renal carcinoma cells exhibit increased NF-kappaB activity but the mechanism is unclear. NF-kappaB affects tumorigenesis and therapeutic resistance in some settings.
View Article and Find Full Text PDFClear cell carcinoma of the kidney is a major cause of mortality in patients with von Hippel-Lindau (VHL) disease, which is caused by germ line mutations that inactivate the VHL tumor suppressor gene. Biallelic VHL inactivation, due to mutations or hypermethylation, is also common in sporadic clear cell renal carcinomas. The VHL gene product, pVHL, is part of a ubiquitin ligase complex that targets the alpha subunits of the heterodimeric transcription factor hypoxia-inducible factor (HIF) for destruction under well-oxygenated conditions.
View Article and Find Full Text PDF