Publications by authors named "Yoichiro Kusakari"

Thiamine (vitamin B1) is necessary for energy production, especially in the heart. Recent studies have demonstrated that thiamine supplementation for cardiac diseases is beneficial. However, the detailed mechanisms underlying thiamine-preserved cardiac function have not been elucidated.

View Article and Find Full Text PDF

Myocardial fibrosis is often associated with cardiac hypertrophy; indeed, fibrosis is one of the most critical factors affecting prognosis. We aimed to identify the molecules involved in promoting fibrosis under hypertrophic stimuli. We previously established a rat model of cardiac hypertrophy by pulmonary artery banding, in which approximately half of the animals developed fibrosis in the right ventricle.

View Article and Find Full Text PDF

Mitochondrial fragmentation frequently occurs in chronic pathological conditions as seen in various human diseases. In fact, abnormal mitochondrial morphology and mitochondrial dysfunction are hallmarks of heart failure (HF) in both human patients and HF animal models. A link between mitochondrial fragmentation and cardiac pathologies has been widely proposed, but the physiological relevance of mitochondrial fission and fusion in the heart is still unclear.

View Article and Find Full Text PDF

Recent discoveries of the molecular identity of mitochondrial Ca influx/efflux mechanisms have placed mitochondrial Ca transport at center stage in views of cellular regulation in various cell-types/tissues. Indeed, mitochondria in cardiac muscles also possess the molecular components for efficient uptake and extraction of Ca. Over the last several years, multiple groups have taken advantage of newly available molecular information about these proteins and applied genetic tools to delineate the precise mechanisms for mitochondrial Ca handling in cardiomyocytes and its contribution to excitation-contraction/metabolism coupling in the heart.

View Article and Find Full Text PDF

Fatty acid (FA) oxidation is impaired and glycolysis is promoted in the damaged heart. However, the factor(s) in the early stages of myocardial metabolic impairment remain(s) unclear. C57B6 mice were subcutaneously administered monocrotaline (MCT) in doses of 0.

View Article and Find Full Text PDF

Background: Previous research has revealed that patent vein grafts lose their venous identity Eph-B4 but do not gain arterial identity ephrin-B2 during adaptation to the arterial circulation, and vascular identity marker, for example, the Eph-B4 signaling is a critical determinant of venous wall thickness of vein grafts. But what is the remodeling pattern, especially the remodeling pattern of vascular identity in the venous segment of arteriovenous shunt at a late stage postoperation has not been fully explored. This study was conducted to characterize the remodeling pattern of shear stress, vascular identity, structural composition and morphology, and transcriptional profiles in jugular segment of carotid-jugular (CJ) shunt and/or pulmonary artery (PA), which delivers an increased amount of mixed blood at a late stage postoperation in adult rats.

View Article and Find Full Text PDF

The effects of heat stress on the morphological properties and intracellular signaling of innervated and denervated soleus muscles were investigated. Heat stress was applied to rats by immersing their hindlimbs in a warm water bath (42°C, 30 min/day, every other day following unilateral denervation) under anesthesia. During 14 days of experimental period, heat stress for a total of seven times promoted growth-related hypertrophy in sham-operated muscles and attenuated atrophy in denervated muscles.

View Article and Find Full Text PDF

Objective: A rat model of left atrial stenosis-associated pulmonary hypertension due to left heart diseases was prepared to elucidate its mechanism.

Methods: Five-week-old Sprague-Dawley rats were randomly divided into 2 groups: left atrial stenosis and sham-operated control. Echocardiography was performed 2, 4, 6, and 10 weeks after surgery, and cardiac catheterization and organ excision were subsequently performed at 10 weeks after surgery.

View Article and Find Full Text PDF

Interstitial myocardial fibrosis is one of the factors responsible for dysfunction of the heart. However, how interstitial fibrosis affects cardiac function and excitation-contraction coupling (E-C coupling) has not yet been clarified. We developed an animal model of right ventricular (RV) hypertrophy with fibrosis by pulmonary artery (PA) banding in rats.

View Article and Find Full Text PDF

Background: Thrombin is a serine protease known to be the final product of the coagulation cascade. However, thrombin plays other physiological roles in processes such as gastric contractions and vessel wound healing, and a state of coagulability is increased in patients with dilated cardiomyopathy (DCM). In this study, we investigate the role of thrombin in the pathogenesis of DCM.

View Article and Find Full Text PDF

Introduction: Disuse-induced skeletal muscle atrophy is a serious concern; however, there is not an effective mouse model to elucidate the molecular mechanisms. We developed a noninvasive atrophy model in mice.

Methods: After the ankle joints of mice were bandaged into a bilateral plantar flexed position, either bilateral or unilateral hindlimbs were immobilized by wrapping in bonsai steel wire.

View Article and Find Full Text PDF

Background: Hepatic fibrosis progresses with right heart failure, and becomes cardiac cirrhosis in a severe case. Although its causal factor still remains unclear. Here we evaluated the progression of hepatic fibrosis using a pulmonary artery banding (PAB)-induced right heart failure model and investigated whether cardiac output (CO) is responsible for the progression of hepatic fibrosis.

View Article and Find Full Text PDF
Article Synopsis
  • Sarcolipin (SLN) is a small proteolipid important for regulating calcium transport in heart tissue, specifically expressed in the atrium.
  • Researchers created SLN-Cre knockin (Sln(Cre/+)) mice to facilitate atrium-specific gene targeting using the Cre-loxP system.
  • The study found that while SLN levels were reduced in Sln(Cre/+) mouse atria, there were no notable differences in heart function or morphology compared to wild-type mice, suggesting the SLN-Cre mice can be a useful model for further research.
View Article and Find Full Text PDF

Adverse left ventricular (LV) remodeling after acute myocardial infarction is characterized by LV dilatation and development of a fibrotic scar, and is a critical factor for the prognosis of subsequent development of heart failure. Although myofiber organization is recognized as being important for preserving physiological cardiac function and structure, the anatomical features of injured myofibers during LV remodeling have not been fully defined. In a mouse model of ischemia-reperfusion (I/R) injury induced by left anterior descending coronary artery ligation, our previous histological assays demonstrated that broad fibrotic scarring extended from the initial infarct zone to the remote zone, and was clearly demarcated along midcircumferential myofibers.

View Article and Find Full Text PDF

The Ca(2+) content in the sarcoplasmic reticulum (SR) determines the amount of Ca(2+) released, thereby regulating the magnitude of Ca(2+) transient and contraction in cardiac muscle. The Ca(2+) content in the SR is known to be regulated by two factors: the activity of the Ca(2+) pump (SERCA) and Ca(2+) leak through the ryanodine receptor (RyR). However, the direct relationship between the SERCA activity and Ca(2+) leak has not been fully investigated in the heart.

View Article and Find Full Text PDF

It has been reported that the Frank-Starling mechanism is coordinately regulated in cardiac muscle via thin filament "on-off" equilibrium and titin-based lattice spacing changes. In the present study, we tested the hypothesis that the deletion mutation ΔK210 in the cardiac troponin T gene shifts the equilibrium toward the "off" state and accordingly attenuate the sarcomere length (SL) dependence of active force production, via reduced cross-bridge formation. Confocal imaging in isolated hearts revealed that the cardiomyocytes were enlarged, especially in the longitudinal direction, in ΔK210 hearts, with striation patterns similar to those in wild type (WT) hearts, suggesting that the number of sarcomeres is increased in cardiomyocytes but the sarcomere length remains unaltered.

View Article and Find Full Text PDF

Adrenoceptor stimulation is a key determinant of cardiac excitation-contraction coupling mainly through the activation of serine/threonine kinases. However, little is known about the role of protein tyrosine kinases (PTKs) activated by adrenergic signaling on cardiac excitation-contraction coupling. A cytoplasmic tyrosine residue in β1-adrenoceptor is estimated to regulate Gs-protein binding affinity from crystal structure studies, but the signaling pathway leading to the phosphorylation of these residues is unknown.

View Article and Find Full Text PDF

Cardiac mammalian target of rapamycin (mTOR) is necessary and sufficient to prevent cardiac dysfunction in pathological hypertrophy. However, the role of cardiac mTOR in heart failure after ischemic injury remains undefined. To address this question, we used transgenic (Tg) mice with cardiac-specific overexpression of mTOR (mTOR-Tg mice) to study ischemia-reperfusion (I/R) injury in two animal models: 1) in vivo I/R injury with transient coronary artery ligation and 2) ex vivo I/R injury in Langendorff-perfused hearts with transient global ischemia.

View Article and Find Full Text PDF

Previous studies have suggested that inhibition of the mammalian target of rapamycin (mTOR) by rapamycin suppresses myocardial hypertrophy. However, the role of mTOR in the progression of cardiac dysfunction in pathological hypertrophy has not been fully defined. Interestingly, recent reports indicate that the inflammatory response, which plays an important role in the development of heart failure, is enhanced by rapamycin under certain conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Chronic heart failure leads to increased calcium leakage from specific receptors in heart cells due to chronic stimulation by catecholamines.
  • The study focused on identifying the responsible kinase involved in this calcium leak, particularly examining the roles of PKA and CaMKII.
  • Results revealed that the increased calcium leak from heart cells upon beta-adrenergic stimulation is primarily due to PKA-dependent phosphorylation of ryanodine receptors, and this effect can be blocked by PKA inhibitors.
View Article and Find Full Text PDF

Left ventricular (LV) remodeling following myocardial infarction (MI) is considered to contribute to cardiac dysfunction. Though myofiber organization is a key component of cardiac structure, functional and anatomical features of injured myofiber during LV remodeling have not been fully defined. We investigated myocyte injury after acute MI in a mouse model.

View Article and Find Full Text PDF

The waveforms of myocardial tension and left ventricular (LV) pressure curves are useful for evaluating myocardial and LV performance, and especially for inotropism and lusitropism. Recently, we found that half-logistic (h-L) functions provide better fits for the two partial rising and two partial falling phases of the isovolumic LV pressure curve compared to mono-exponential (m-E) functions, and that the h-L time constants for the four sequential phases are superior inotropic and lusitropic indices compared to the m-E time constants. In the present study, we tested the hypothesis that the four sequential phases of the isometric tension curves in mammalian cardiac muscles could be curve-fitted accurately using h-L functions.

View Article and Find Full Text PDF

We examined the effect of alpha(1)-adrenoceptor subtype-specific stimulation on L-type Ca2+ current (I(Ca)) and elucidated the subtype-specific intracellular mechanisms for the regulation of L-type Ca2+ channels in isolated rat ventricular myocytes. We confirmed the protein expression of alpha(1A)- and alpha(1B)-adrenoceptor subtypes at the transverse tubules (T-tubules) and found that simultaneous stimulation of these 2 receptor subtypes by nonsubtype selective agonist, phenylephrine, showed 2 opposite effects on I(Ca) (transient decrease followed by sustained increase). However, selective alpha(1A)-adrenoceptor stimulation (> or =0.

View Article and Find Full Text PDF

A decrease in intracellular calcium (Ca2+) concentration in the cardiac muscle is one of the important factors to induce myocardial relaxation. A mono-exponential (m-E) function has been used for assessing myocardial relaxation curve of isometric tension and intracellular calcium transient (CaT) decay, and the m-E time constants for the relaxation curve of isometric tension (F tau E) and CaT decay (Ca tau E) have been recognised as lusitropic indices. However, we found that a half-logistic (h-L) function fits the relaxation curve of isometric tension much more precisely than the conventional m-E function in the ferret right ventricular (RV) papillary muscle.

View Article and Find Full Text PDF

Myocardial intracellular calcium (Ca2+) transients (CaTs) regulate tension generation and relaxation. Isometric tension curves are often analyzed using exponential equations; however, we previously demonstrated that hybrid logistic (HL) functions, which describe the difference between two S-shaped logistic functions, provide more accurate representations. In the present study, we investigated the potential application of HL functions for analyzing CaTs directly.

View Article and Find Full Text PDF