Publications by authors named "Yoichi Ueta"

The posterior pituitary (PP) hormones oxytocin (OXT) and arginine vasopressin (AVP) are synthesized within the hypothalamic nucleus and released from the PP into systemic circulation. Hypothalamic AVP projects its axons into the external layer of median eminence (eME) and regulates anterior pituitary hormone secretion during stress responses. Although similar as PP hormones, we demonstrate distinct regulatory roles of estrogen in hypothalamic OXT and AVP dynamics.

View Article and Find Full Text PDF

Oxytocin (OXT) was discovered in 1906 as a substance that promotes the pregnancy and childbirth. It affects uterine contraction and lactation. Furthermore, as one of its physiological properties, it exerts analgesic effects.

View Article and Find Full Text PDF

Introduction: Within the realm of chemogenetics, a particular form of agonists targeting designer receptors exclusively activated by designer drugs (DREADDs) has emerged. Deschloroclozapine (DCZ), a recently introduced DREADDs agonist, demonstrates remarkable potency in activating targeted neurons at a lower dosage compared to clozapine-N-oxide (CNO).

Methods: We conducted a comparative analysis of the effects of subcutaneously administered CNO (1 mg/kg) and DCZ (0.

View Article and Find Full Text PDF

Oxytocin (OXT) is a neuropeptide hormone that plays a critical role in nociception. Long-term potentiation (LTP) is a major form of synaptic plasticity in the central nervous system. Recently, LTP has been reported in the hypothalamus; however, data on LTP in hypothalamic OXT-ergic neurons are unclear.

View Article and Find Full Text PDF

Here we demonstrate, in rodents, how the timing of feeding behaviour becomes disordered when circulating glucocorticoid rhythms are dissociated from lighting cues; a phenomenon most commonly associated with shift-work and transmeridian travel 'jetlag'. Adrenalectomized rats are infused with physiological patterns of corticosterone modelled on the endogenous adrenal secretory profile, either in-phase or out-of-phase with lighting cues. For the in-phase group, food intake is significantly greater during the rats' active period compared to their inactive period; a feeding pattern similar to adrenal-intact control rats.

View Article and Find Full Text PDF

Fibromyalgia (FM) is a syndrome characterized by chronic pain with depression as a frequent comorbidity. However, efficient management of the pain and depressive symptoms of FM is lacking. Given that endogenous oxytocin (OXT) contributes to the regulation of pain and depressive disorders, herein, we investigated the role of OXT in an experimental reserpine-induced FM model.

View Article and Find Full Text PDF

Orexin-A and -B (identical to hypocretin-1 and -2) are neuropeptides synthesized in the lateral hypothalamus and perifornical area, and orexin neurons project their axon terminals broadly throughout the entire central nervous system (CNS). The activity of orexins is mediated by two specific G protein-coupled receptors (GPCRs), termed orexin type1 receptor (OX1R) and orexin type2 receptor (OX2R). The orexin system plays a relevant role in various physiological functions, including arousal, feeding, reward, and thermogenesis, and is key to human health.

View Article and Find Full Text PDF

Fasting with varying intensities is used to treat obesity-related diseases. Re-feeding after fasting exhibits hyperphagia and often rebound weight gain. However, the mechanisms underlying the hyperphagia and rebound remain elusive.

View Article and Find Full Text PDF

Hypothalamo-neurohypophysial oxytocin (OXT) plays an essential role in reproduction and in several socio-physiological functions, including stress reduction, anxiety relief, feeding suppression, social recognition, and trust building. Recent studies suggest that the central OXT system is also involved in antinociceptive and anti-inflammatory functions. Kamikihi-to (KKT), a Japanese traditional herbal (Kampo) medicine composed of 14 herbal ingredients, is clinically prescribed for patients with psychological symptoms, including anxiety, depression, and insomnia, and it has been associated with OXT expression.

View Article and Find Full Text PDF
Article Synopsis
  • Oxytocin (OXT) is a hormone made in a part of the brain called the hypothalamus, and it helps control behaviors like being a good mom and eating.
  • Scientists wanted to see if a hormone called estrogen affects how OXT works in the hypothalamus and found out that OXT levels are different in males and females.
  • When they gave estrogen to female rats, the OXT levels increased, especially during a certain stage in their reproductive cycle, showing that estrogen can boost OXT in the brain.
View Article and Find Full Text PDF

Oxytocin is involved in pain transmission, although the detailed mechanism is not fully understood. Here, we generate a transgenic rat line that expresses human muscarinic acetylcholine receptors (hM3Dq) and mCherry in oxytocin neurons. We report that clozapine-N-oxide (CNO) treatment of our oxytocin-hM3Dq-mCherry rats exclusively activates oxytocin neurons within the supraoptic and paraventricular nuclei, leading to activation of neurons in the locus coeruleus (LC) and dorsal raphe nucleus (DR), and differential gene expression in GABA-ergic neurons in the L5 spinal dorsal horn.

View Article and Find Full Text PDF

Arginine vasopressin (AVP) is a hypothalamic neurosecretory hormone well known as an antidiuretic, and recently reported to be involved in pain modulation. The expression kinetics of AVP and its potential involvement in the descending pain modulation system (DPMS) in neuropathic pain (NP) remains unclear. We investigated AVP expression and its effects on mechanical and thermal nociceptive thresholds using a unilateral spinal nerve ligation (SNL) model.

View Article and Find Full Text PDF

Suppressing the elevation in core body temperature is an important factor in preventing heatstroke. However, there is still no non-invasive method to sense core body temperature. This study proposed an algorithm that estimates core body temperature based on electrocardiogram signals.

View Article and Find Full Text PDF

Oxytocin (Oxt) is known to regulate social communication, stress and body weight. The activation of Oxt receptors (OTR) has clinical potential to abate stress disorders and metabolic syndrome. Kamikihito (KKT) is a traditional Japanese medicine used to treat psychological stress-related disorders.

View Article and Find Full Text PDF

The neuropeptide oxytocin (OT) has emerged as an important anorexigen in the regulation of food intake and energy balance. It has been shown that the release of OT and activation of hypothalamic OT neurons coincide with food ingestion. Its effects on feeding have largely been attributed to limiting meal size through interactions in key regulatory brain regions governing the homeostatic control of food intake such as the hypothalamus and hindbrain in addition to key feeding reward areas such as the nucleus accumbens and ventral tegmental area.

View Article and Find Full Text PDF
Article Synopsis
  • Arginine vasopressin (AVP) is produced in the paraventricular (PVN) and supraoptic nuclei (SON) of the brain, with increased production in response to conditions like hypovolemia.
  • The study focuses on how hypovolemia and hyperosmolality affect AVP dynamics in the magnocellular and parvocellular divisions of the PVN, using genetically modified rats that express AVP-enhanced green fluorescent protein (eGFP).
  • Findings show that hypovolemia significantly upregulates AVP and corticotrophin-releasing factor (CRF) synthesis in the pPVN, subsequently activating the hypothalamic-pituitary-adrenal (HPA
View Article and Find Full Text PDF

Scope: Nutrients stimulate the secretion of glucagon-like peptide-1 (GLP-1), an incretin hormone, secreted from enteroendocrine L-cells which decreases food intake. Thus, GLP-1 analogs are approved for the treatment of obesity, yet cost and side effects limit their use. L-cells are mainly localized in the distal ileum and colon, which hinders the utilization of nutrients targeting GLP-1 secretion.

View Article and Find Full Text PDF

Transgenic approaches have been applied to generate transgenic rats that express exogenous genes in arginine vasopressin (AVP)- and oxytocin (OXT)-producing magnocellular neurosecretory cells (MNCs) of the hypothalamic-neurohypophyseal system (HNS). First, the fusion gene that expresses AVP-enhanced green fluorescent protein (eGFP) and OXT-monomeric red fluorescent protein 1 (mRFP1) was used to visualize AVP- and OXT-producing MNCs and their axon terminals in the HNS under fluorescence microscopy. Second, the fusion gene that expresses c-fos-eGFP and c-fos-mRFP1 was used to identify activated neurons physiologically in the central nervous system, including MNCs, circumventricular organs and spinal cord.

View Article and Find Full Text PDF

We examined whether the chemogenetic activation of endogenous arginine vasopressin (AVP) affects central nesfatin-1/NucB2 neurons, using a transgenic rat line that was previously generated. Saline (1 mL/kg) or clozapine-N-oxide (CNO, 1 mg/mL/kg), an agonist for hM3Dq, was subcutaneously administered in adult male AVP-hM3Dq-mCherry transgenic rats (300-370 g). Food and water intake were significantly suppressed after subcutaneous (s.

View Article and Find Full Text PDF

From its identification and isolation in 1954, arginine vasopressin (AVP) has attracted attention, not only for its peripheral functions such as vasoconstriction and reabsorption of water from kidney, but also for its central effects. As there is now considerable evidence that AVP plays a crucial role in feeding behavior and energy balance, it has become a promising therapeutic target for treating obesity or other obesity-related metabolic disorders. However, the underlying mechanisms for AVP regulation of these central processes still remain largely unknown.

View Article and Find Full Text PDF

Background/aims: Arginine vasopressin (AVP) neurons play an important role for sensing a change in the plasma osmolarity and thereby responding with regulated AVP secretion in order to maintain the body fluid homeostasis. The osmo-sensing processes in magnocellular neurosecretory cells (MNCs) including AVP and oxytocin (OXT) neurons of the hypothalamus were reported to be coupled to sustained osmotic shrinkage or swelling without exhibiting discernible cell volume regulation. Since increasing evidence has shown some important differences in properties between AVP and OXT neurons, osmotic volume responses are to be reexamined with distinguishing these cell types from each other.

View Article and Find Full Text PDF

The dorsal spinal cord contains projection neurons that transmit somatosensory information to the brain and interneurons which then modulate neuronal activity of these projection neurons and/or other interneurons. Interneurons can be subdivided into two groups: excitatory and inhibitory neurons. While inhibitory interneurons are thought to play a crucial role in analgesia, it is unclear whether they are involved in neuropathic pain.

View Article and Find Full Text PDF

Transient receptor potential vanilloid 1 (TRPV1) modulates pain. Studies have indicated that TRPV1 is upregulated in the spinal dorsal horn in the neuropathic pain model, but its mechanism is unknown. Here, we examined the mechanism by which TRPV1 modulates neuropathic pain by employing partial sciatic nerve ligation (pSNL) in adult male C57BL/6 J (wild-type: WT) and TRPV1 knockout (Trpv1-/-) mice.

View Article and Find Full Text PDF