Publications by authors named "Yoichi Toyokawa"

Article Synopsis
  • * Researchers isolated a yeast mutant (K7-V7) with a specific amino acid change that increased valine accumulation, resulting in higher production of fruity aromas in sake.
  • * The findings suggest that the modified yeast strain K7-V7 can produce sake with significantly enhanced levels of aroma compounds, paving the way for creating unique flavor profiles in sake brewing.
View Article and Find Full Text PDF

We isolated a new strain of the yeast Saccharomyces cerevisiae, 35a14, from banana stems in Okinawa. This strain did not belong to any industrial yeast groups in a phylogenetic tree and produced high levels of alcohol. Furthermore, awamori, an Okinawa's traditional distilled alcoholic beverage, brewed with an l-leucine overproducing mutant derived from 35a14 showed a high concentration of isoamyl acetate.

View Article and Find Full Text PDF

Branched-chain higher alcohols (BCHAs), or fusel alcohols, including isobutanol, isoamyl alcohol, and active amyl alcohol, are useful compounds in several industries. The yeast Saccharomyces cerevisiae can synthesize these compounds via the metabolic pathways of branched-chain amino acids (BCAAs). Branched-chain amino acid aminotransaminases (BCATs) are the key enzymes for BCHA production via the Ehrlich pathway of BCAAs.

View Article and Find Full Text PDF

Branched-chain amino acid aminotransferase (BCAT) catalyzes bidirectional transamination in the cell between branched-chain amino acids (BCAAs; valine, leucine, and isoleucine) and branched-chain α-keto acids (BCKAs; α-ketoisovalerate, α-ketoisocaproate, and α-keto-β-methylvalerate). Eukaryotic cells contain two types of paralogous BCATs: mitochondrial BCAT (BCATm) and cytosolic BCAT (BCATc). Both isozymes have identical enzymatic functions, so they have long been considered to perform similar physiological functions in the cells.

View Article and Find Full Text PDF

Awamori, the traditional distilled alcoholic beverage of Okinawa, Japan, is brewed with the yeast . During the distillation process after the fermentation, enormous quantities of distillation residues containing yeast cells must be disposed of, and this has recently been recognized as a major problem both environmentally and economically. Proline, a multifunctional amino acid, has the highest water retention capacity among amino acids.

View Article and Find Full Text PDF

Homocitrate synthase (HCS) catalyzes the aldol condensation of 2-oxoglutarate (2-OG) and acetyl coenzyme A (AcCoA) to form homocitrate, which is the first enzyme of the lysine biosynthetic pathway in the yeast Saccharomyces cerevisiae. The HCS activity is tightly regulated via feedback inhibition by the end product lysine. Here, we designed a feedback inhibition-insensitive HCS of S.

View Article and Find Full Text PDF

In the yeast Saccharomyces cerevisiae, the mitochondrial branched-chain amino acid (BCAA) aminotransferase Bat1 plays an important role in the synthesis of BCAAs (valine, leucine, and isoleucine). Our upcoming study (Large et al. bioRχiv.

View Article and Find Full Text PDF
Article Synopsis
  • Yeast metabolism is crucial for producing unique flavors in alcoholic beverages like awamori, a traditional spirit from Okinawa, necessitating the optimization of yeast strains for diverse taste profiles.
  • A novel yeast strain, HC02-5-2, isolated from hibiscus flowers, shows high alcohol production and exhibits significant potential for enhancing the flavors in aged awamori due to its ability to produce 4-vinyl guaiacol, a precursor to vanillin.
  • Further breeding of strain HC02-5-2 led to the development of a mutant strain (T25) that accumulates L-leucine, resulting in higher levels of fruity flavors compared to the original strain, showcasing the impact of genetic modification on flavor enhancement
View Article and Find Full Text PDF

The exact mechanisms by which nanoparticles, especially those composed of soft materials, are modified by gas plasma remain unclear. Here, we used respiratory syncytial virus (RSV), which has a diameter of 80-350nm, as a model system to identify important factors for gas plasma modification of nanoparticles composed of soft materials. Nitrogen gas plasma, generated by applying a short high-voltage pulse using a static induction (SI) thyristor power supply produced reactive chemical species (RCS) and caused virus inactivation.

View Article and Find Full Text PDF

Gas plasma, produced by a short high‑voltage pulse generated from a static induction thyristor power supply [1.5 kilo pulse/sec (kpps)], was demonstrated to inactivate Geobacillus stearothermophilus spores (decimal reduction time at 15 min, 2.48 min).

View Article and Find Full Text PDF

Adenovirus is one of the most important causative agents of iatrogenic infections derived from contaminated medical devices or finger contact. In this study, we investigated whether nitrogen gas plasma, generated by applying a short high-voltage pulse to nitrogen using a static induction thyristor power supply (1.5 kilo pulse per second), exhibited a virucidal effect against adenoviruses.

View Article and Find Full Text PDF

A gram-positive thermotolerant bacterium, designated strain RKK-04, was isolated from a fermented Thai fish sauce broth as it demonstrated high proteolytic activity. A phylogenetic analysis based on comparisons of 16S rRNA gene sequences showed that strain RKK-04 is Bacillus licheniformis. The proteolytic enzyme, which was purified 80-fold with 18% yield, has a molecular mass of 31 kDa and an isoelectric point higher than 9.

View Article and Find Full Text PDF