Publications by authors named "Yoichi Ezura"

Teriparatide is a peptide derived from a parathyroid hormone (PTH) and an osteoporosis therapeutic drug with potent bone formation-promoting activity. To identify novel druggable genes that act downstream of PTH signaling and are potentially involved in bone formation, we screened PTH target genes in mouse osteoblast-like MC3T3-E1 cells. Here we show that Gprc5a, encoding an orphan G protein-coupled receptor, is a novel PTH-inducible gene and negatively regulates osteoblast proliferation and differentiation.

View Article and Find Full Text PDF

A novel osteolytic disorder due to mutation was discovered recently as early-onset Paget's disease of bone (PDB). Bone loss and pain in adult PDB patients have been treated using bisphosphonates. However, therapeutic strategies for this specific disorder have not been established.

View Article and Find Full Text PDF

Gorham-Stout disease (GSD), also called vanishing bone disease, is a rare osteolytic disease, frequently associated with lymphangiomatous tissue proliferation. The causative genetic background has not been noted except for a case with a somatic mutation in . However, in the present study, we encountered a case of GSD from a consanguineous family member.

View Article and Find Full Text PDF

Background: Profilin-1 (Pfn1), an evolutionarily conserved actin-binding protein, is an important regulator of the cytoskeleton. We previously reported the osteoclast-specific Pfn1-conditional knockout (cKO) mice had postnatal osteolytic phenotype with craniofacial and long-bone deformities associated with increased migration of cultured osteoclasts. We hypothesized the increased cellular processes structured with branched actin filaments may underlies the mechanism of increased bone resorption in these mutant mice.

View Article and Find Full Text PDF

Sarcopenia is among the most common medical problems of the aging population worldwide and a major social concern. Here, we explored the therapeutic potential of TM5484, a novel orally available PAI-1 inhibitor, to prevent sarcopenia. The sarcopenic phenotypes of the calf muscle of 12- and 6-month-old middle-aged mice were compared.

View Article and Find Full Text PDF

Cytoplasmic polyadenylation element binding (CPEB) proteins are RNA-binding proteins involved in translational regulation of the specific target mRNAs and control function of various organs including brain, liver and hematopoietic system. However, the role of CPEB proteins during osteoclast differentiation remains unclear. Here we show that Cpeb4 is required for RANKL-induced osteoclast differentiation in mouse macrophage-derived RAW264.

View Article and Find Full Text PDF

In the past decade, a growing importance has been placed on understanding the significance of long noncoding RNAs (lncRNAs) in regulating development, metabolism, and homeostasis. Osteoblast proliferation and differentiation are essential elements in skeletal development, bone metabolism, and homeostasis. However, the underlying mechanisms of lncRNAs in the process of osteoblast proliferation and differentiation remain largely unknown.

View Article and Find Full Text PDF

Profilin 1 (Pfn1), a regulator of actin polymerization, controls cell movement in a context-dependent manner. Pfn1 supports the locomotion of most adherent cells by assisting actin-filament elongation, as has been shown in skeletal progenitor cells in our previous study. However, because Pfn1 has also been known to inhibit migration of certain cells, including T cells, by suppressing branched-end elongation of actin filaments, we hypothesized that its roles in osteoclasts may be different from that of osteoblasts.

View Article and Find Full Text PDF

Little is known about the molecular mechanisms of enthesis formation in mature animals. Here, we report that annexin A5 (Anxa5) plays a critical role in the regulation of bone ridge outgrowth at the entheses. We found that Anxa5 is highly expressed in the entheses of postnatal and adult mice.

View Article and Find Full Text PDF

Bone mass is determined by coordinated acts of osteoblasts and osteoclasts, which control bone formation and resorption, respectively. Osteoclasts are multinucleated, macrophage/monocyte lineage cells from bone marrow. The Dok-family adaptors Dok-1, Dok-2 and Dok-3 are expressed in the macrophage/monocyte lineage and negatively regulate many signaling pathways, implying roles in osteoclastogenesis.

View Article and Find Full Text PDF

In mammals, the ovarian follicles are regulated at least in part by bone morphogenetic protein (BMP) family members. Dullard (also known as Ctdnep1) gene encodes a phosphatase that suppresses BMP signaling by inactivating or degrading BMP receptors. Here we report that the Col1a1-Cre-induced Dullard mutant mice displayed hemorrhagic ovarian cysts, with red blood cells accumulated in the follicles, resulting in infertility.

View Article and Find Full Text PDF

The bone is the main storage site for Ca and Mg ions in the mammalian body. Although investigations into Ca signaling have progressed rapidly and led to better understanding of bone biology, the Mg signaling pathway and associated molecules remain to be elucidated. Here, we investigated the role of a potential Mg signaling-related lysosomal molecule, two-pore channel subtype 2 (TPC2), in osteoclast differentiation and bone remodeling.

View Article and Find Full Text PDF

Osteocytes are the most abundant cells in bone and regulate bone metabolism in coordination with osteoblasts and osteoclasts. However, the molecules that control osteocytes are still incompletely understood. Profilin1 is an actin-binding protein that is involved in actin polymerization.

View Article and Find Full Text PDF

Osteoporosis is one of the most prevalent ageing-associated diseases that are soaring in the modern world. Although various aspects of the disease have been investigated to understand the bases of osteoporosis, the pathophysiological mechanisms underlying bone loss is still incompletely understood. Poldip2 is a molecule that has been shown to be involved in cell migration of vascular cells and angiogenesis.

View Article and Find Full Text PDF

LGR4 is expressed in bone and has been shown to be involved in bone metabolism. Oxidative stress is one of the key issues in pathophysiology of osteoporosis. However, the link between Lgr4 and oxidative stress has not been known.

View Article and Find Full Text PDF

Bardet-Biedl Syndrome (BBS) is an autosomal recessive disorder and is classified as one of the ciliopathy. The patients manifest a characteristic craniofacial dysmorphology but the effects of Bbs3 deficiency in the developmental process during the craniofacial pathogenesis are still incompletely understood. Here, we analyzed a cranial development of a BBS model Bbs3 mouse.

View Article and Find Full Text PDF

Heterotopic ossification (HO) in various tissues evokes clinical problems. Inflammatory responses of the stromal progenitor cells may be involved in its etiology. Previous report indicated that pro-inflammatory cytokines including IL-1β enhanced the in vitro calcification of human mesenchymal stem cells (MSCs), by suppressing the expression of ectonucleotide pyrophosphatase/phosphodiesterase-1 gene (ENPP1).

View Article and Find Full Text PDF

Bone formation is precisely regulated by cell-cell communication in osteoblasts. We have previously demonstrated that genetic deletion of Col6a1 or Col12a1 impairs osteoblast connections and/or communication in mice, resulting in bone mass reduction and bone fragility. Mutations of the genes encoding collagen VI cause Ullrich congenital muscular dystrophy (UCMD) and Bethlem myopathy (BM), which have overlapping phenotypes involving connective tissue and muscle.

View Article and Find Full Text PDF

Osteoporosis is a common disease that increases individual's fragility fracture risk. PTH is the only therapeutic agent for severe osteoporosis that requires anabolic action of bone formation. Although a part of the PTH actions is explained by increased proliferation of osteoblastic precursor cells, the mechanisms involved in the proliferation of osteoblastic cells by PTH have not been clarified yet.

View Article and Find Full Text PDF

Migration of the cells in osteoblastic lineage, including preosteoblasts and osteoblasts, has been postulated to influence bone formation. However, the molecular bases that link preosteoblastic/osteoblastic cell migration and bone formation are incompletely understood. Nck (noncatalytic region of tyrosine kinase; collectively referred to Nck1 and Nck2) is a member of the signaling adaptors that regulate cell migration and cytoskeletal structures, but its function in cells in the osteoblastic lineage is not known.

View Article and Find Full Text PDF

Unloading induces bone loss and causes disuse osteoporosis. However, the mechanism underlying disuse osteoporosis is still incompletely understood. Here, we examined the effects of cathepsin K (CatK) deficiency on disuse osteoporosis induced by using sciatic neurectomy (Nx) model.

View Article and Find Full Text PDF

CIZ/NMP4 (Cas interacting zinc finger protein, Nmp4, Zfp384) is a transcription factor that is known to regulate matrix related-proteins. To explore the possible pathophysiological role of CIZ/NMP4 in arthritis, we examined CIZ/NMP4 expression in articular cartilage in arthritis model. CIZ/NMP4 was expressed in the articular chondrocytes of mice at low levels while its expression was enhanced when arthritis was induced.

View Article and Find Full Text PDF

Osteoporosis is one of the most prevalent diseases and the number of patients suffering from this disease is soaring due to the increase in the aged population in the world. The severity of bone loss in osteoporosis is based on the levels of impairment in the balance between bone formation and bone resorption, two arms of the bone metabolism, and bone remodeling. However, determination of bone formation levels is under many layers of control that are as yet fully defined.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionjhd0rf72fh6ucebrdo0ek1r0e59hkvma): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once