Publications by authors named "Yohko Yano"

When a slightly soluble surfactant droplet is positioned at the tip of a capillary beneath the water surface, the surface tension begins to oscillate spontaneously─a phenomenon known as the spontaneous oscillation of surface tension (SOS). This behavior arises from transient Marangoni flows generated periodically by surfactant molecules. Our molecular-level observations reveal that this oscillatory behavior originates from periodic fluctuations in the surface pressure of the surfactant monolayer at the water surface, which are attributed to orientational changes in the surfactant molecules.

View Article and Find Full Text PDF

X-ray reflectivity measurements were performed for the leucine and lysine-based LKα14 peptide designed to adopt an α-helical conformation at the air-water interface. The electron density profiles along the surface normal were calculated from the atomic coordinates predicted by an electronic structure program to fit the X-ray reflectivity curve. At the concentration of the monolayer formation, the long axis of the α-helix adsorbed parallel to the water surface, and the central part was revealed to be submerged in water.

View Article and Find Full Text PDF

Regularly recurring phenomena are a common and important part of life. Such rhythmic behaviors are often seen in nonliving systems under far-from-equilibrium conditions. The study of simple nonliving systems provides clues for improving our understanding of the origin of biological rhythms.

View Article and Find Full Text PDF

We present the results of time-resolved X-ray reflectivity measurements carried out to investigate the early stage of protein adsorption and deformation at an air-water interface. Three globular proteins [lysozyme, myoglobin, and bovine serum albumin (BSA)] were studied, and we observed that the proteins adsorbed at the air-water interface initially possessed a thinner conformation than their native structures. The degree of deformation increased in the order myoglobin < lysozyme < BSA, which was inconsistent with the order of molecular flexibility.

View Article and Find Full Text PDF

An X-ray reflectometer using a laboratory X-ray source for quick measurements of the specular X-ray reflectivity curve is presented. It uses a bent-twisted crystal to monochromatize and focus the diverging X-rays (Cu α) from a laboratory point source onto the sample. The reflected X-rays are recorded with a two-dimensional detector.

View Article and Find Full Text PDF

Hofmeister anion effects on adsorption kinetics of the positively charged lysozyme (pH < pI) at an air-water interface were studied by surface tension measurements and time-resolved X-ray reflectometry. In the salt-free solution, the protein adsorption rate increases with decreasing the net positive charge of lysozyme. When salt ions are dissolved in water, the protein adsorption rate drastically increases, and the rate is following an inverse Hoffmeister series (Br(-) > Cl(-) > F(-)).

View Article and Find Full Text PDF

Protein unfolding at an air-water interface has been demonstrated such that the X-ray reflectivity can be measured with an acquisition time of 1 s using a recently developed simultaneous multiple-angle-wavelength-dispersive X-ray reflectometer. This has enabled the electron density profile of the adsorbed protein molecules to be obtained in real time. A globular protein, lysozyme, adsorbed at the air-water interface is found to unfold into a flat shape within 1 s.

View Article and Find Full Text PDF

An X-ray reflectometer has been developed, which can simultaneously measure the whole specular X-ray reflectivity curve with no need for rotation of the sample, detector or monochromator crystal during the measurement. A bent-twisted crystal polychromator is used to realise a convergent X-ray beam which has continuously varying energy E (wavelength λ) and glancing angle α to the sample surface as a function of horizontal direction. This convergent beam is reflected in the vertical direction by the sample placed horizontally at the focus and then diverges horizontally and vertically.

View Article and Find Full Text PDF

The conformation of protein molecules is determined by a balance of various forces, including van der Waals attraction, electrostatic interaction, hydrogen bonding, and conformational entropy. When protein molecules encounter an interface, they are often adsorbed on the interface. The conformation of an adsorbed protein molecule strongly depends on the interaction between the protein and the interface.

View Article and Find Full Text PDF

An X-ray reflectometer for simultaneous measurement of specular and off-specular reflection of liquid surfaces is described. The reflectometer, equipped with a two-dimensional single X-ray photon-counting pixel array detector obtained the full range of X-ray specular and off-specular reflections in an extremely short time (1 s). Both the specular and off-specular reflection of water exhibited good agreement with the predicted capillary-wave theory within the appropriate instrumental resolution.

View Article and Find Full Text PDF

Time-resolved X-ray reflectivity measurements for lysozyme (LSZ) adsorbed at an air/water interface were performed to study the mechanism of adsorption-induced protein unfolding. The time dependence of the density profile at the air/water interface revealed that the molecular conformation changed significantly during adsorption. Taking into account previous work using Fourier transform infrared (FTIR) spectroscopy, we propose that the LSZ molecules initially adsorbed on the air/water interface have a flat unfolded structure, forming antiparallel beta-sheets as a result of hydrophobic interactions with the gas phase.

View Article and Find Full Text PDF

Grazing-incidence x-ray diffraction measurements were carried out to observe the surface structure of [bmim][PF(6)]. At an incident angle of less than the critical angle, a diffraction pattern from 10 nm beneath the surface was obtained. A broad Debye-Scherrer ring was observed in the diffraction patterns, indicating that the [bmim][PF(6)] molecules near the surface are randomly orientated, similar to those in the bulk liquid.

View Article and Find Full Text PDF

Small-angle x-ray scattering measurements using a brilliant x-ray source revealed nanometer sized liquid droplets in a mist formed by ultrasonic atomization. Ultrasonic atomization of ethanol-water mixtures produced a combination of water-rich droplets of micrometer order and ethanol-rich droplets as small as 1 nm, which is 10(-3) times smaller than the predicted size. These sizes were also obtained for mists generated from the pure liquids.

View Article and Find Full Text PDF

In situ x-ray diffraction measurements were carried out for investigating the liquid structure in the ultrasonic fountain jet to consider the mechanism of the "ultrasonic ethanol separation" reported by Sato et al. [J. Chem.

View Article and Find Full Text PDF

The critical Casimir force (CF) is observed in thin wetting films of a binary liquid mixture close to the liquid/vapor coexistence. X-ray reflectivity shows thickness (L) enhancement near the bulk consolute point. The extracted Casimir amplitude Delta(+-)=3+/-1 agrees with the theoretical universal value for the antisymmetric 3D Ising films.

View Article and Find Full Text PDF

Adsorption isotherms of binary aqueous solutions of methanol, ethanol, 1-propanol, 2-propanol, tert-butanol, and 1-butanol are demonstrated, being calculated by using the Gibbs adsorption equation with experimental data of surface tension and vapor pressure found in the literature. For all of the alcohol-water mixtures, the maximum value in the adsorption isotherm, namely, the maximum surface excess is about that expected for the formation of a monolayer. Furthermore, the composition of the mixture for the maximum surface excess coincides with that corresponding to the minimum in the excess partial molar volume of the solutes.

View Article and Find Full Text PDF