Publications by authors named "Yohei Ueda"

Activation of thyroid-stimulating hormone receptor (TSHR) fundamentally leads to hyperthyroidism. To elucidate TSHR signaling, we conducted transcriptome analyses for hyperthyroid mice that we generated by overexpressing TSH. TSH overexpression drastically changed their thyroid transcriptome.

View Article and Find Full Text PDF

Silver-Russell syndrome (SRS) is a syndrome characterized by prenatal and postnatal growth retardation, facial features, and body asymmetry. SRS is often complicated with hypoglycemia, whose etiology is unclear. We describe the clinical course of 25-year-old man with hypoglycemia.

View Article and Find Full Text PDF
Article Synopsis
  • Cushing disease is caused by pituitary tumors that secrete ACTH, and current treatment options for inoperative cases are limited.
  • A high-throughput screening (HTS) was conducted using a mouse pituitary tumor cell line (AtT-20), leading to the identification of several compounds that significantly inhibited ACTH secretion.
  • Among the identified compounds, thiostrepton showed promising antitumor effects by causing cell cycle arrest and enhancing therapeutic efficacy when combined with other treatments, indicating its potential as a treatment for Cushing disease.
View Article and Find Full Text PDF

Insulinomas are the most common functional pancreatic neuroendocrine neoplasm; when treatment is delayed, they induce hyperinsulinemic hypoglycemia, which is life-threatening. As surgical resection is the only curative treatment for insulinoma, preoperative localization is crucial; however, localization based on conventional imaging modalities such as computed tomography (CT) and magnetic resonance imaging is often inconclusive. Somatostatin receptor-targeted imaging is another option for detecting pancreatic neuroendocrine neoplasms but has low sensitivity and is not specific for insulinoma.

View Article and Find Full Text PDF

C-type natriuretic peptide (CNP) plays a crucial role in enhancing endochondral bone growth and holds promise as a therapeutic agent for impaired skeletal growth. To overcome CNP's short half-life, we explored the potential of dampening its clearance system. Neprilysin (NEP) is an endopeptidase responsible for catalyzing the degradation of CNP.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) are used for various malignancies, although they frequently cause immune-related adverse events involving the thyroid gland (thyroid irAEs). We conducted a retrospective cohort study to elucidate thyroid function outcomes. Fifty of 639 patients who received PD-1 blockade therapy met criteria and were divided into the following groups: thyrotoxicosis with subsequent hypothyroidism (Toxic-Hypo, n = 21); thyrotoxicosis without subsequent hypothyroidism (Toxic, n = 9); and hypothyroidism without prior thyrotoxicosis (Hypo, n = 20).

View Article and Find Full Text PDF

As 3,3',5-triiodothyroacetic acid (TRIAC), a metabolite of thyroid hormones (THs), was previously detected in sewage effluent, we aimed to investigate exogenous TRIAC's potential for endocrine disruption. We administered either TRIAC or 3,3',5-triiodo-L-thyronine (LT3) to euthyroid mice and 6-propyl-2-thiouracil-induced hypothyroid mice. In hypothyroid mice, TRIAC administration suppressed the hypothalamus-pituitary-thyroid (HPT) axis and upregulated TH-responsive genes in the pituitary gland, the liver, and the heart.

View Article and Find Full Text PDF

Immune checkpoint inhibitors (ICIs) frequently cause immune-related adverse events (irAEs) that often involve endocrine organs. Pembrolizumab and atezolizumab are currently administered in combination with chemotherapy for several malignancies. Although transient thyrotoxicosis within 6 weeks after the first ICI dose is the typical course of thyroid irAEs with ICI monotherapy, we encountered a unique course of a thyroid irAE in a patient who received combination therapy consisting of pembrolizumab plus pemetrexed and carboplatin.

View Article and Find Full Text PDF

Skeletal alterations in the head and neck region, such as midfacial hypoplasia, foramen magnum stenosis and spinal canal stenosis, are commonly observed in patients with mucopolysaccharidosis (MPS). However, enzyme replacement therapy (ERT), one of the major treatment approaches for MPS, shows limited efficacy for skeletal conditions. In this study, we analysed the craniofacial morphology of mice with MPS type VII, and investigated the underlying mechanisms promoting jaw deformities in these animals.

View Article and Find Full Text PDF

Regulatory mechanisms of iodothyronine deiodinases (DIOs) require further elucidation, and conventional methods for evaluating DIOs are unsuitable for high-throughput screening (HTS). Here we explored factors of transcriptional regulation of 3 types of DIOs (DIO1, DIO2, and DIO3) from a chemical library using our designed HTS. We constructed HTS based on a promoter assay and performed a screen of 2480 bioactive compounds.

View Article and Find Full Text PDF

Objective: This study aimed to determine the effect of C-type natriuretic peptide (CNP) overexpression on craniofacial growth during the pubertal growth period in mice.

Design: Six-week-old C57BL/6 mice were injected with pLIVE-Empty vectors (Control mice) and pLIVE-NPPC vectors (CNP mice) using the hydrodynamic method. Morphological analyses were performed at the age of 12 weeks.

View Article and Find Full Text PDF

The growth plates are cartilage tissues found at both ends of developing bones, and vital proliferation and differentiation of growth plate chondrocytes are primarily responsible for bone growth. C-type natriuretic peptide (CNP) stimulates bone growth by activating natriuretic peptide receptor 2 (NPR2) which is equipped with guanylate cyclase on the cytoplasmic side, but its signaling pathway is unclear in growth plate chondrocytes. We previously reported that transient receptor potential melastatin-like 7 (TRPM7) channels mediate intermissive Ca influx in growth plate chondrocytes, leading to activation of Ca/calmodulin-dependent protein kinase II (CaMKII) for promoting bone growth.

View Article and Find Full Text PDF

In peripheral tissues, triiodothyronine (T3) production and consequent thyroid hormone actions are mainly regulated by iodothyronine deiodinases (DIOs) classified into 3 types: D1, D2, and D3. We aimed to investigate the effects of peripheral DIOs on thyroid hormone economy independent of the hypothalamus-pituitary-thyroid axis. We cloned coding sequences of human DIOs with FLAG-tag and HiBiT-tag sequences into a pcDNA3.

View Article and Find Full Text PDF

Objective: A unique clinical course was observed in a patient with resistance to thyroid hormone β (RTHβ) caused by a variant of the THRB gene leading to the replacement of glycine with arginine in codon 347 (p.G347R). He presented with the syndrome of inappropriate secretion of thyrotropin (TSH) (free T4 [fT4]: 32.

View Article and Find Full Text PDF

Opioids are widely used for treatment of acute and chronic pain. However, opioids have several well-known clinical adverse effects such as constipation, nausea, respiratory depression and drowsiness. Endocrine dysfunctions are also opioid-induced adverse effects but remain under-diagnosed in clinical settings, especially opioid-induced adrenal insufficiency (OIAI).

View Article and Find Full Text PDF

Objective: Programmed cell death-1 (PD-1) blockade therapy, an immune checkpoint treatment, can induce hypophysitis or hypopituitarism as an immune-related adverse event (pituitary irAE). We aimed to clarify the clinical features of pituitary irAEs during PD-1 blockade therapy.

Design, Patients And Measurements: This retrospective study investigated consecutive patients treated with nivolumab, an anti-PD-1 antibody, at Kyoto University Hospital between 1 September 2014 and 31 August 2019.

View Article and Find Full Text PDF

C-type natriuretic peptide (CNP) is a pivotal enhancer of endochondral bone growth and is expected to be a therapeutic reagent for impaired skeletal growth. Although we showed that CNP stimulates bone growth as a local regulator in the growth plate via the autocrine/paracrine system, CNP is abundantly produced in other various tissues and its blood concentration is reported to correlate positively with growth velocity. Therefore we investigated the systemic regulation of CNP levels using rodent models.

View Article and Find Full Text PDF

Growth impairment in mucopolysaccharidoses (MPSs) is an unresolved issue as it is resistant to enzyme replacement therapy (ERT) and growth hormone therapy. C-type natriuretic peptide (CNP) is a promising agent that has growth-promoting effects. Here we investigate the effects of CNP on growth impairment of MPSs using Gusbmps-2J mice, a model for MPS type VII, with combination therapy of CNP and ERT by hydrodynamic gene delivery.

View Article and Find Full Text PDF

A highly E-selective cross-dimerization of terminal alkynes with either terminal silylacetylenes, tert-butylacetylene, or 1-trimethylsilyloxy-1,1-diphenyl-2-propyne in the presence of a dichlorocobalt(II) complex bearing a sterically demanding 2,9-bis(2,4,6-triisopropylphenyl)-1,10-phenanthroline, activated with two equivalents of EtMgBr, gives a variety of (E)-1,3-enynes. A well-characterized diolefin/cobalt(0) complex, with divinyltetramethyldisiloxane, acted as a catalytically active species without any activation, clearly indicating that a cobalt(0) species is involved in the catalytic cycle.

View Article and Find Full Text PDF

Growth retardation is an important side effect of glucocorticoid (GC)-based drugs, which are widely used in various preparations to treat many pediatric diseases. We investigated the therapeutic effect of exogenous CNP-53, a stable molecular form of intrinsic CNP, on a mouse model of GC-induced growth retardation. We found that CNP-53 successfully restored GC-induced growth retardation when both dexamethasone (DEX) and CNP-53 were injected from 4 to 8 weeks old.

View Article and Find Full Text PDF

C-type natriuretic peptide (CNP)-knockout (KO) rats exhibit impaired skeletal growth, with long bones shorter than those in wild-type (WT) rats. This study compared craniofacial morphology in the CNP-KO rat with that in the Spontaneous Dwarf Rat (SDR), a growth hormone (GH)-deficient model. The effects of subcutaneous administration of human CNP with 53 amino acids (CNP-53) from 5 weeks of age for 4 weeks on craniofacial morphology in CNP-KO rats were also investigated.

View Article and Find Full Text PDF

We developed a non-toxic cyanation reaction of various aryl halides and triflates in acetonitrile using a catalyst system of [Ni(MeCN)](BF), 1,10-phenanthroline, and 1,4-bis(trimethylsilyl)-2,3,5,6-tetramethyl-1,4-dihydropyrazine (-Me-DHP). -Me-DHP was found to function as a reductant for generating nickel(0) species and a silylation reagent to achieve the catalytic cyanation C-CN bond cleavage.

View Article and Find Full Text PDF

Given the established roles of glucose-dependent insulinotropic polypeptide (GIP) in promoting fat storage and bone formation, we assessed the contribution of GIP to obesity and osteopenia in ovariectomized mice with a gene encoding green fluorescent protein (GFP) inserted into the GIP locus, in which GIP was either reduced (GIP ) or absent (GIP ). In GIP mice, weight gain, subcutaneous and visceral fat mass were reduced, and glucose intolerance was improved compared with wild-type mice with the same magnitude of insulin responses. Cancellous bone mineral density and bone cortical thickness were reduced in GIP mice compared with wild-type mice.

View Article and Find Full Text PDF

A new series of low-valent dinuclear molybdenum complexes bearing phosphido or phosphinidene bridging ligands was synthesized as a structural model of heterogeneous metal phosphide catalysts. Addition of acid to a monocationic Mo -μ-P complex results in phosphide protonation, affording a dicationic Mo -μ-PH species. Alternatively, reaction of an isoelectronic Mo -μ-P precursor with LiBEt H gives a Mo H-μ-P complex.

View Article and Find Full Text PDF

Signaling by C-type natriuretic peptide (CNP) and its receptor, natriuretic peptide receptor-B, is a pivotal stimulator of endochondral bone growth. We recently developed CNP knockout (KO) rats that exhibit impaired skeletal growth with early growth plate closure. In the current study, we further characterized the phenotype and growth plate morphology in CNP-KO rats, and the effects of exogenous CNP in rats.

View Article and Find Full Text PDF