Publications by authors named "Yohei M Rosen"

The introduction of Internet-connected technologies to the classroom has the potential to revolutionize STEM education by allowing students to perform experiments in complex models that are unattainable in traditional teaching laboratories. By connecting laboratory equipment to the cloud, we introduce students to experimentation in pluripotent stem cell (PSC)-derived cortical organoids in two different settings: using microscopy to monitor organoid growth in an introductory tissue culture course and using high-density (HD) multielectrode arrays (MEAs) to perform neuronal stimulation and recording in an advanced neuroscience mathematics course. We demonstrate that this approach develops interest in stem cell and neuroscience in the students of both courses.

View Article and Find Full Text PDF

The introduction of internet-connected technologies to the classroom has the potential to revolutionize STEM education by allowing students to perform experiments in complex models that are unattainable in traditional teaching laboratories. By connecting laboratory equipment to the cloud, we introduce students to experimentation in pluripotent stem cell-derived cortical organoids in two different settings: Using microscopy to monitor organoid growth in an introductory tissue culture course, and using high density multielectrode arrays to perform neuronal stimulation and recording in an advanced neuroscience mathematics course. We demonstrate that this approach develops interest in stem cell and neuroscience in the students of both courses.

View Article and Find Full Text PDF
Article Synopsis
  • Project-based learning (PBL) is an effective method for teaching complex biology concepts, but not all schools have the resources for it.
  • A new framework using remote-controlled internet-connected microscopes allows one lab to host experiments for many students worldwide, enabling unique research opportunities.
  • User studies showed that students were more excited about science and more interested in STEM careers after participating, indicating the potential for this method to make biology education more accessible globally.
View Article and Find Full Text PDF

Simultaneous longitudinal imaging across multiple conditions and replicates has been crucial for scientific studies aiming to understand biological processes and disease. Yet, imaging systems capable of accomplishing these tasks are economically unattainable for most academic and teaching laboratories around the world. Here, we propose the Picroscope, which is the first low-cost system for simultaneous longitudinal biological imaging made primarily using off-the-shelf and 3D-printed materials.

View Article and Find Full Text PDF

Background: Hidden Markov models of haplotype inheritance such as the Li and Stephens model allow for computationally tractable probability calculations using the forward algorithm as long as the representative reference panel used in the model is sufficiently small. Specifically, the monoploid Li and Stephens model and its variants are linear in reference panel size unless heuristic approximations are used. However, sequencing projects numbering in the thousands to hundreds of thousands of individuals are underway, and others numbering in the millions are anticipated.

View Article and Find Full Text PDF

A superbubble is a type of directed acyclic subgraph with single distinct source and sink vertices. In genome assembly and genetics, the possible paths through a superbubble can be considered to represent the set of possible sequences at a location in a genome. Bidirected and biedged graphs are a generalization of digraphs that are increasingly being used to more fully represent genome assembly and variation problems.

View Article and Find Full Text PDF