Publications by authors named "Yohannes Afeworki"

This study investigates the effects of a dual selective Class I histone deacetylase (HDAC)/lysine-specific histone demethylase 1A (LSD1) inhibitor known as 4SC-202 (Domatinostat) on tumor growth and metastasis in a highly metastatic murine model of Triple Negative Breast Cancer (TNBC). 4SC-202 is cytotoxic and cytostatic to the TNBC murine cell line 4T1 and the human TNBC cell line MDA-MB-231; the drug does not kill the normal breast epithelial cell line MCF10A. Furthermore, 4SC-202 reduces cancer cell migration.

View Article and Find Full Text PDF

Although many cancer prognoses have improved in the past 50 years due to advancements in treatments, there has been little improvement in therapies for small-cell lung cancer (SCLC). One promising avenue to improve treatment for SCLC is to understand its underlying genetic alterations that drive its formation, growth, and cellular heterogeneity. loss is one key driver of SCLC, and loss has been associated with an increase in pluripotency factors such as .

View Article and Find Full Text PDF

Dysregulation of histone deacetylases (HDACs) is associated with the pathogenesis of human osteosarcoma, which may present an epigenetic vulnerability as well as a therapeutic target. Domatinostat (4SC-202) is a next-generation class I HDAC inhibitor that is currently being used in clinical research for certain cancers, but its impact on human osteosarcoma has yet to be explored. In this study, we report that 4SC-202 inhibits osteosarcoma cell growth in vitro and in vivo.

View Article and Find Full Text PDF

The processes that underlie neuronal conversion ultimately involve a reorganization of transcriptional networks to establish a neuronal cell fate. As such, transcriptional profiling is a key component toward understanding this process. In this chapter, we will discuss methods of elucidating transcriptional networks during neuronal reprogramming and considerations that should be incorporated in experimental design.

View Article and Find Full Text PDF

Outcomes have not improved for metastatic osteosarcoma for several decades. In part, this failure to develop better therapies stems from a lack of understanding of osteosarcoma biology, given the rarity of the disease and the high genetic heterogeneity at the time of diagnosis. We report here the successful establishment of a new human osteosarcoma cell line, COS-33, from a patient-derived xenograft and demonstrate retention of the biological features of the original tumor.

View Article and Find Full Text PDF

Functional variants in nuclear envelope genes are implicated as underlying causes of cardiopathology. To examine the potential association of single nucleotide variants of nucleoporin genes with cardiac disease, we employed a prognostic scoring approach to investigate variants of , a nucleoporin gene clinically linked with atrial fibrillation. Here we implemented bioinformatic profiling and predictive scoring, based on the gnomAD, National Heart Lung and Blood Institute-Exome Sequencing Project (NHLBI-ESP) Exome Variant Server, and dbNSFP databases to identify rare single nucleotide variants (SNVs) of potentially associated with cardiopathology.

View Article and Find Full Text PDF
Article Synopsis
  • Recent studies sparked renewed interest in hydrotropism, particularly in how roots sense water and the role of auxin, focusing on maize instead of Arabidopsis.
  • The research found that the very tip of maize roots is the most sensitive to water stimuli and that hydrotropic bending involves a coordinated change in cell growth and IAA (auxin) distribution.
  • Key processes during early hydrotropic response include IAA redistribution and lignin synthesis, showing that maize roots perceive water differently than Arabidopsis.
View Article and Find Full Text PDF