Publications by authors named "Yohann Thimont"

The reliability and failure mechanisms of silicide-based thermoelectric modules (-type Mg(Si,Sn)/-type HMS) were investigated thanks to two types of thermal tests with either a fixed or a cycling thermal gradient, under different atmospheres. The hot interfaces of the thermoelectric modules were analyzed by scanning electron microscopy and X-ray diffraction after the reliability tests. The current thermoelectric modules do not exhibit any failure mechanism under ambient air for a hot side temperature of 250 °C for tests conducted either during 500 h at a fixed temperature gradient or after 1000 thermal cycles.

View Article and Find Full Text PDF

P-type Mg doped CuCrO₂ thin films have been deposited on fused silica substrates by Radio-Frequency (RF) magnetron sputtering. The as-deposited CuCrO₂:Mg thin films have been annealed at different temperatures (from 450 to 650 °C) under primary vacuum to obtain the delafossite phase. The annealed samples exhibit 3R delafossite structure.

View Article and Find Full Text PDF

P-type semiconducting copper oxide (CuO) thin films deposited by radio-frequency (RF) sputtering were integrated onto microsensors using classical photolithography technologies. The integration of the 50-nm-thick layer could be successfully carried out using the lift-off process. The microsensors were tested with variable thermal sequences under carbon monoxide (CO), ammonia (NH₃), acetaldehyde (C₂H₄O), and nitrogen dioxide (NO₂) which are among the main pollutant gases measured by metal-oxide (MOS) gas sensors for air quality control systems in automotive cabins.

View Article and Find Full Text PDF

The integration of a 50-nm-thick layer of an innovative sensitive material on microsensors has been developed based on silicon micro-hotplates. In this study, integration of ZnO:Ga via radio-frequency (RF) sputtering has been successfully combined with a low cost and reliable stencil mask technique to obtain repeatable sensing layers on top of interdigitated electrodes. The variation of the resistance of this n-type Ga-doped ZnO has been measured under sub-ppm traces (500 ppb) of acetaldehyde (C₂H₄O).

View Article and Find Full Text PDF